5 resultados para Folate Receptor 1
em Universidade do Minho
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and have been shown to specifically express a receptor for the vitamin folic acid (FA), folate receptor (FR). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
Up to 20% of patients with pilocytic astrocytoma (PA) experience a poor outcome. BRAF alterations and Fibroblast growth factor receptor 1 (FGFR1) point mutations are key molecular alterations in Pas, but their clinical implications are not established. We aimed to determine the frequency and prognostic role of these alterations in a cohort of 69 patients with PAs. We assessed KIAA1549:BRAF fusion by fluorescence in situ hybridization and BRAF (exon 15) mutations by capillary sequencing. In addition, FGFR1 expression was analyzed using immunohistochemistry, and this was compared with gene amplification and hotspot mutations (exons 12 and 14) assessed by fluorescence in situ hybridization and capillary sequencing. KIAA1549:BRAF fusion was identified in almost 60% of cases. Two tumors harbored mutated BRAF. Despite high FGFR1 expression overall, no cases had FGFR1 amplifications. Three cases harbored a FGFR1 p.K656E point mutation. No correlation was observed between BRAF and FGFR1 alterations. The cases were predominantly pediatric (87%), and no statistical differences were observed in molecular alterations-related patient ages. In summary, we confirmed the high frequency of KIAA1549:BRAF fusion in PAs and its association with a better outcome. Oncogenic mutations of FGFR1, although rare, occurred in a subset of patients with worse outcome. These molecular alterations may constitute alternative targets for novel clinical approaches, when radical surgical resection is unachievable.
Resumo:
The synthesis and biological evaluation of novel 1-aryl-3-[2-, 3- or 4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 3, 4 and 5 as VEGFR-2 tyrosine kinase inhibitors, are reported. The 1-aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 4a-4h, with the arylurea in the meta position to the thioether, showed the lowest IC50 values in enzymatic assays (10-206 nM), the most potent compounds 4d-4h (IC50 10-28 nM) bearing hydrophobic groups (Me, F, CF3 and Cl) in the terminal phenyl ring. A convincing rationalization was achieved for the highest potent compounds 4 as type II VEGFR-2 inhibitors, based on the simultaneous presence of: (1) the thioether linker and (2) the arylurea moiety in the meta position. For compounds 4, significant inhibition of Human Umbilical Vein Endothelial Cells (HUVECs) proliferation (BrdU assay), migration (wound-healing assay) and tube formation were observed at low concentrations. These compounds have also shown to increase apoptosis using the TUNEL assay. Immunostaining for total and phosphorylated (active) VEGFR-2 was performed by Western blotting. The phosphorylation of the receptor was significantly inhibited at 1.0 and 2.5 microM for the most promising compounds. Altogether, these findings point to an antiangiogenic effect in HUVECs.