5 resultados para Flutter, Uncertainty, CFD
em Universidade do Minho
Resumo:
Doctoral Thesis for PhD degree in Industrial and Systems Engineering
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of s√=7 TeV corresponding to an integrated luminosity of 4.7 fb −1 . Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti- kt algorithm with distance parameters R=0.4 or R=0.6 , and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20≤pjetT<1000 GeV and pseudorapidities |η|<4.5 . The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ( |η|<1.2 ) for jets with 55≤pjetT<500 GeV . For central jets at lower pT , the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for pjetT>1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low- pT jets at |η|=4.5 . Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.
Resumo:
Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, in cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule, a fortiori when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality, this approach has been frequently used, by project managers in an ad-hoc way.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
There are two significant reasons for the uncertainties of water demand. On one hand, an evolving technological world is plagued with accelerated change in lifestyles and consumption patterns; and on the other hand, intensifying climate change. Therefore, with an uncertain future, what enables policymakers to define the state of water resources, which are affected by withdrawals and demands? Through a case study based on thirteen years of observation data in the Zayandeh Rud River basin in Isfahan province located in Iran, this paper forecasts a wide range of urban water demand possibilities in order to create a portfolio of plans which could be utilized by different water managers. A comparison and contrast of two existing methods are discussed, demonstrating the Random Walk Methodology, which will be referred to as the â On uncertainty pathâ , because it takes the uncertainties into account and can be recommended to managers. This On Uncertainty Path is composed of both dynamic forecasting method and system simulation. The outcomes show the advantage of such methods particularly for places that climate change will aggravate their water scarcity, such as Iran.