21 resultados para Flow attachment
em Universidade do Minho
Resumo:
A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.
Resumo:
The kinetics of GnP dispersion in polypropylene melt was studied using a prototype small scale modular extensional mixer. Its modular nature enabled the sequential application of a mixing step, melt relaxation, and a second mixing step. The latter could reproduce the flow conditions on the first mixing step, or generate milder flow conditions. The effect of these sequences of flow constraints upon GnP dispersion along the mixer length was studied for composites with 2 and 10 wt.% GnP. The samples collected along the first mixing zone showed a gradual decrease of number and size of GnP agglomerates, at a rate that was independent of the flow conditions imposed to the melt, but dependent on composition. The relaxation zone induced GnP re-agglomeration, and the application of a second mixing step caused variable dispersion results that were largely dependent on the hydrodynamic stresses generated.
Resumo:
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed.
Resumo:
This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem
Resumo:
This work reports the implemen tation and verification of a new so lver in OpenFOAM® open source computational library, able to cope w ith integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with anal ytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes. Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions.
Resumo:
The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes . Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions
Resumo:
Dissertação de mestrado em Psicologia Aplicada
Resumo:
"Published online: 15 Sep 2015."
Resumo:
The present study investigated whether oculomotor behavior is influenced by attachment styles. The Relationship Scales Questionnaire was used to assess attachment styles of forty-eight voluntary university students and to classify them into attachment groups (secure, preoccupied, fearful, and dismissing). Eye-tracking was recorded while participants engaged in a 3-seconds free visual exploration of stimuli presenting either a positive or a negative picture together with a neutral picture, all depicting social interactions. The task consisted in identifying whether the two pictures depicted the same emotion. Results showed that the processing of negative pictures was impermeable to attachment style, while the processing of positive pictures was significantly influenced by individual differences in insecure attachment. The groups highly avoidant regarding to attachment (dismissing and fearful) showed reduced accuracy, suggesting a higher threshold for recognizing positive emotions compared to the secure group. The groups with higher attachment anxiety (preoccupied and fearful) showed differences in automatic capture of attention, in particular an increased delay preceding the first fixation to a picture of positive emotional valence. Despite lenient statistical thresholds induced by the limited sample size of some groups (p < 0.05 uncorrected for multiple comparisons), the current findings suggest that the processing of positive emotions is affected by attachment styles. These results are discussed within a broader evolutionary framework.
Resumo:
This study examined the mediating effects of relationship satisfaction, prayer for a partner, and morbidity in the relationship between attachment and loneliness, infidelity and loneliness, and psychological morbidity and loneliness, in college students involved in a romantic relationship. Participants were students in an introductory course on family development. This study examined only students (n = 345) who were involved in a romantic relationship. The average age of participants was 19.46 (SD = 1.92) and 25 % were males. Short-form UCLA Loneliness Scale (ULS-8), (Hays and DiMatteo in J Pers Assess 51:69–81, doi:10.1207/s15327752jpa5101_6, 1987); Relationship Satisfaction Scale (Funk and Rogge in J Fam Psychol 21:572–583, doi:10.1037/0893-3200.21.4.572, 2007); Rotterdam Symptom Checklist (De Haes et al. in Measuring the quality of life of cancer patients with the Rotterdam Symptom Checklist (RSCL): a manual, Northern Centre for Healthcare Research, Groningen, 1996); Prayer for Partner Scale, (Fincham et al. in J Pers Soc Psychol 99:649–659, doi:10.1037/a0019628, 2010); Infidelity Scale, (Drigotas et al. in J Pers Soc Psychol 77:509–524, doi:10.1037/0022-3514.77.3.509, 1999); and the Experiences in Close Relationship Scale-short form (Wei et al. in J Couns Psychol 52(4):602–614, doi:10.1037/0022-0167.52.4.602, 2005). Results showed that relationship satisfaction mediated the relationship between avoidance attachment and loneliness and between infidelity and loneliness. Physical morbidity mediated the relationship between anxious attachment and psychological morbidity. Psychological morbidity mediated the relationship between anxious attachment and physical morbidity. The present results expand the literature on attachment by presenting evidence that anxious and avoidant partners experience loneliness differently. Implications for couple’s therapy are addressed. Future research should replicate these results with older samples and married couples.
Resumo:
This study’s goal was to analyze whether the quality of university students’ relationship with their parents mediated the association between mental health and physical symptoms and health behavior. Participants were 250 university students (66% female and 34% male), aged between 17 and 29 years old (M = 20.88, SD = 2.03) that answered the Father/Mother Attachment Questionnaire (FMAQ), the Physical Symptoms Scale from the Rotterdam Symptom Checklist (RSCL), the Health Behavior Questionnaire (HBQ), and the Hospital Anxiety and Depression Scale (HADS). The results showed that the indirect effect of physical symptoms on health behavior was significantly mediated by the father’s and mother’s inhibition of exploration and individuality (IEI). Also the indirect effect of psychological distress on health behavior was significantly mediated by the father’s and mother’s IEI. These results suggest that young adults who had more restrictions to their individuality show worse health behaviors. Separation Anxiety and Dependence (SAD) and Quality of Emotional Bond (QEB), the other 2 attachment scales, were not mediators of the relationship between physical symptoms/ psychological distress and health behavior. This study shows the importance of promoting positive parenting practices that contribute to healthier behavior choices and less risky behaviors, as well as the need for more studies that clearly identify these practices in young adult populations.
Resumo:
The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard--scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in tt¯ events with one W boson decaying leptonically and the other decaying to jets using 20.3 fb−1 of data recorded with the ATLAS detector at a centre--of--mass energy of s√=8 TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.
Resumo:
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using sNN−−−−√=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated lumonisity of 7 μb−1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities ϵ2 and ϵ3. On the other hand, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with ϵm-ϵn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.