20 resultados para Finite volume method
em Universidade do Minho
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
This work presents a numerical study of the 4:1 planar contraction flow of a viscoelastic fluid described by the simplified Phan-Thien–Tanner model under the influence of slip boundary conditions at the channel walls. The linear Navier slip law was considered with the dimensionless slip coefficient varying in the range ½0; 4500. The simulations were carried out for a small constant Reynolds number of 0.04 and Deborah numbers (De) varying between 0 and 5. Convergence could not be achieved for higher values of the Deborah number, especially for large values of the slip coefficient, due to the large stress gradients near the singularity of the reentrant corner. Increasing the slip coefficient leads to the formation of two vortices, a corner and a lip vortex. The lip vortex grows with increasing slip until it absorbs the corner vortex, creating a single large vortex that continues to increase in size and intensity. In the range De = 3–5 no lip vortex was formed. The flow is characterized in detail for De ¼ 1 as function of the slip coefficient, while for the remaining De only the main features are shown for specific values of the slip coefficient.
Resumo:
In several industrial applications, highly complex behaviour materials are used together with intricate mixing processes, which difficult the achievement of the desired properties for the produced materials. This is the case of the well-known dispersion of nano-sized fillers in a melt polymer matrix, used to improve the nanocomposite mechanical and/or electrical properties. This mixing is usually performed in twin-screw extruders, that promote complex flow patterns, and, since an in loco analysis of the material evolution and mixing is difficult to perform, numerical tools can be very useful to predict the evolution and behaviour of the material. This work presents a numerical based study to improve the understanding of mixing processes. Initial numerical studies were performed with generalized Newtonian fluids, but, due to the null relaxation time that characterize this type of fluids, the assumption of viscoelastic behavior was required. Therefore, the polymer melt was rheologically characterized, and, a six mode Phan-Thien-Tanner and Giesekus models were used to fit the rheological data. These viscoelastic rheological models were used to model the process. The conclusions obtained in this work provide additional and useful data to correlate the type and intensity of the deformation history promoted to the polymer nanocomposite and the quality of the mixing obtained.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
Tese de Doutoramento em Engenharia Civil (área de especialização em Engenharia de Estruturas).
Resumo:
The usage of rebars in construction is the most common method for reinforcing plain concrete and thus bridging the tensile stresses along the concrete crack surfaces. Usually design codes for modelling the bond behaviour of rebars and concrete suggest a local bond stress – slip relationship that comprises distinct reinforcement mechanisms, such as adhesion, friction and mechanical anchorage. In this work, numerical simulations of pullout tests were performed using the finite element method framework. The interaction between rebar and concrete was modelled using cohesive elements. Distinct local bond laws were used and compared with ones proposed by the Model Code 2010. Finally an attempt was made to model the geometry of the rebar ribs in conjunction with a material damaged plasticity model for concrete.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Resumo:
This paper presents the numerical simulations of the punching behaviour of centrally loaded steel fibre reinforced self-compacting concrete (SFRSCC) flat slabs. Eight half scaled slabs reinforced with different content of hooked-end steel fibres (0, 60, 75 and 90 kg/m3) and concrete strengths of 50 and 70 MPa were tested and numerically modelled. Moreover, a total of 54 three-point bending tests were carried out to assess the post-cracking flexural tensile strength. All the slabs had a relatively high conventional flexural reinforcement in order to promote the occurrence of punching failure mode. Neither of the slabs had any type of specific shear reinforcement rather than the contribution of the steel fibres. The numerical simulations were performed according to the Reissner-Mindlin theory under the finite element method framework. Regarding the classic formulation of the Reissner-Mindlin theory, in order to simulate the progressive damage induced by cracking, the shell element is discretized into layers, being assumed a plane stress state in each layer. The numerical results are, then, compared with the experimental ones and it is possible to notice that they accurately predict the experimental force-deflection relationship. The type of failure observed experimentally was also predicted in the numerical simulations.
Resumo:
Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
The structural analysis involves the definition of the model and selection of the analysis type. The model should represent the stiffness, the mass and the loads of the structure. The structures can be represented using simplified models, such as the lumped mass models, and advanced models resorting the Finite Element Method (FEM) and Discrete Element Method (DEM). Depending on the characteristics of the structure, different types of analysis can be used such as limit analysis, linear and non-linear static analysis and linear and non-linear dynamic analysis. Unreinforced masonry structures present low tensile strength and the linear analyses seem to not be adequate for assessing their structural behaviour. On the other hand, the static and dynamic non-linear analyses are complex, since they involve large time computational requirements and advanced knowledge of the practitioner. The non-linear analysis requires advanced knowledge on the material properties, analysis tools and interpretation of results. The limit analysis with macro-blocks can be assumed as a more practical method in the estimation of maximum load capacity of structure. Furthermore, the limit analysis require a reduced number of parameters, which is an advantage for the assessment of ancient and historical masonry structures, due to the difficult in obtaining reliable data.
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
In an underwater environment it is difficult to implement solutions for wireless communications. The existing technologies using electromagnetic waves or lasers are not very efficient due to the large attenuation in the aquatic environment. Ultrasound reveals a lower attenuation, and thus has been used in underwater long-distance communications. The much slower speed of acoustic propagation in water (about 1500 m/s) compared with that of electromagnetic and optical waves, is another limiting factor for efficient communication and networking. For high data-rates and real-time applications it is necessary to use frequencies in the MHz range, allowing communication distances of hundreds of meters with a delay of milliseconds. To achieve this goal, it is necessary to develop ultrasound transducers able to work at high frequencies and wideband, with suitable responses to digital modulations. This work shows how the acoustic impedance influences the performance of an ultrasonic emitter transducer when digital modulations are used and operating at frequencies between 100 kHz and 1 MHz. The study includes a Finite Element Method (FEM) and a MATLAB/Simulink simulation with an experimental validation to evaluate two types of piezoelectric materials: one based on ceramics (high acoustic impedance) with a resonance design and the other based in polymer (low acoustic impedance) designed to optimize the performance when digital modulations are used. The transducers performance for Binary Amplitude Shift Keying (BASK), On-Off Keying (OOK), Binary Phase Shift Keying (BPSK) and Binary Frequency Shift Keying (BFSK) modulations with a 1 MHz carrier at 125 kbps baud rate are compared.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica