4 resultados para Ferrets as laboratory animals

em Universidade do Minho


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occupational risks in the nanotechnology research laboratories are an important topic since a great number of researchers are involved in this area. The risk assessment performed by both qualitative and quantitative methods is a necessary step for the management of the occupational risks. Risk assessment could be performed by qualitative methods that gather consensus in the scientific community. It is also possible to use quantitative methods, based in different technics and metrics, as indicative exposure limits are been settled by several institutions. While performing the risk assessment, the information on the materials used is very important and, if it is not updated, it could create a bias in the assessment results. The exposure to TiO2 nanoparticles risk was assessed in a research laboratory using a quantitative exposure method and qualitative risk assessment methods. It was found the results from direct-reading Condensation Particle Counter (CPC) equipment and the CB Nanotool seem to be related and aligned, while the results obtained from the use of the Stoffenmanager Nano seem to indicate a higher risk level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rockburst is characterized by a violent explosion of a block causing a sudden rupture in the rock and is quite common in deep tunnels. It is critical to understand the phenomenon of rockburst, focusing on the patterns of occurrence so these events can be avoided and/or managed saving costs and possibly lives. The failure mechanism of rockburst needs to be better understood. Laboratory experiments are undergoing at the Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE) of Beijing and the system is described. A large number of rockburst tests were performed and their information collected, stored in a database and analyzed. Data Mining (DM) techniques were applied to the database in order to develop predictive models for the rockburst maximum stress (σRB) and rockburst risk index (IRB) that need the results of such tests to be determined. With the developed models it is possible to predict these parameters with high accuracy levels using data from the rock mass and specific project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans the importance of biofilms in disease processes is now widely recognised together with the difficulties in treating such infections once established. One of the earliest and certainly most studied biofilm in humans is that of dental plaque which is responsible for two of the most prevalent human infections, namely dental caries and periodontal disease. However, comparable studies of dental plaque in animals are relatively limited, despite the fact that similar infections also occur, and in the case of farm animals there is an associated economic impact. In addition, biofilms in the mouths of animals can also be detrimental to human health when transferred by animal bites. As a result, an understanding of both the microbial composition of animal plaque biofilms together with their role in animal diseases is important. Through the use of modern molecular studies, an insight into the oral microflora of animals is now being obtained and, to date, reveals that despite differences in terms of microbial species and relative proportions occurring between humans and animals, similarities do indeed exist. This information can be exploited in our efforts to both manage and treat infections in animals arising from the presence of an oral biofilm. This Chapter describes our current understanding of the microbial composition of animal plaque, its role in disease and how oral hygiene measures can be implemented to reduce subsequent infection.