38 resultados para Feminist post-structural

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adding fibres to concrete provides several advantages, especially in terms of controlling the crack opening width and propagation after the cracking onset. However, distribution and orientation of the fibres toward the active crack plane are significantly important in order to maximize its benefits. Therefore, in this study, the effect of the fibre distribution and orientation on the post-cracking tensile behaviour of the steel fibre reinforced self-compacting concrete (SFRSCC) specimens is investigated. For this purpose, several cores were extracted from distinct locations of a panel and were subjected to indirect (splitting) and direct tensile tests. The local stress-crack opening relationship (σ-w) was obtained by modelling the splitting tensile test under the finite element framework and by performing an Inverse Analysis (IA) procedure. Afterwards the σ-w law obtained from IA is then compared with the one ascertained directly from the uniaxial tensile tests. Finally, the fibre distribution/orientation parameters were determined adopting an image analysis technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aimed to assess the early-age evolution of E-modulus of epoxy adhesives used for Fibre-Reinforced Polymer (FRP) strengthening applications. The study involved adapting an existing technique devised for continuous monitoring of concrete stiffness since casting, called EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) for evaluation of epoxy stiffness. Furthermore, monotonic tensile tests according to ISO standards and cyclic tensile tests were carried out at several ages. A comparison between the obtained results was performed in order to better understand the performance of the several techniques in the assessment of stiffness of epoxy resins. When compared to the other methodologies, the method for calculation of E-modulus recommended by ISO standard led to lower values, since in the considered strain interval, the adhesive had a non-linear stress–strain relationship. The EMM-ARM technique revealed its capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the material stiffness growth during the entire curing period. At very early ages the values of Young׳s modulus obtained with quasi-static tests were lower than the values collected by EMM-ARM, due to the fact that epoxy resin exhibited a significant visco-elastic behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since concrete is the most widely utilized construction material, several solutions are currently being developed and investigated for enhancing the sustainability of cementitious materials. One of these solutions is based on producing Recycled Concrete Aggregates (RCA) from existing concrete members resulting by either industrial processes or demolitions of existing structures as a whole. Moreover, waste resulting from industrial processes other than the building construction (i.e., tire recycling, production of steel, powders resulting from other depuration processes) are also being considered as possible low-impact constituents for producing structural concrete and Fiber-Reinforced Cementitious Composites (FRCC). Furthermore, the use of natural fibers is another option for producing environmentally-friendly and cost-effective materials, depending on the local availability of raw materials. To promote the use of concretes partially composed of recycled constituents, their influence on the mechanical and durability performance of these concretes have to be deeply investigated and correlated. This was the main goal of the EnCoRe Project (www.encore-fp7.unisa.it), a EU-funded initiative, whose activities and main findings are summarized in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of houses damaged or destroyed after disasters is frequently large, and re-housing of homeless people is one of the most important tasks of reconstruction programmes. Reconstruction works often last long and during that time, it is essential to provide victims with the minimum conditions to live with dignity, privacy, and protection. This research intends to demonstrate the crucial role of temporary accommodation buildings to provide spaces where people can live and gradually resume their life until they have a permanent house. The study also aims to identify the main problems of temporary accommodation strategies and to discuss some principles and guidelines in order to reach better design solutions. It is found that temporary accommodation is an issue that goes beyond the simple provision of buildings, since the whole space for temporary settlement is important. Likewise, temporary accommodation is a process that should start before a disaster occurs, as a preventive pre-planning. In spite of being temporary constructions, these housing buildings are one of the most important elements to provide in emergency scenarios, contributing for better recovery and reconstruction actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test whether cross-delisted firms from the major U.S. stock exchanges experience an increase in crash risk associated with earnings management. Consistent with our prediction, we find that earnings management have a greater positive impact on stock price crash risk post-cross-delisting when compared to a sample of still cross-listed firms. Moreover, our results suggest that this effect is more pronounced for crossdelisted firms from countries with weaker investor protection and poorer quality of their information environment. We further examine whether managers’ ability to manipulate earnings increases post-cross-delisting around seasoned equity offerings. Our evidence shows that cross-delisted firms that engage in earnings management to inflate reported earnings prior to a seasoned equity offering are more likely to observe a subsequent stock price crash.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the long-term performance of cross-delisted firms from U.S. stock markets. Using a sample of foreign firms listed and delisted from U.S. stock exchange markets over 2000-2012, we examine the operating performance and the long-run stock returns performance of firms post-cross-delisting. Our results suggest that cross-delisted firms have less growth opportunities than matched cross-listed firms in the long run. Moreover, firms that cross-delist after the passage of Rule 12h-6 of 2007 exhibit a significant decline in operating performance. In contrast, before the adoption of the Rule 12h-6, cross-delisted firms seem to be affected by the cost of a U.S. listing in the precross -delisting period. In addition, we provide evidence that cross-delisted firms underperform their cross-listed peers; cross-delisted firms experience negative average abnormal returns, especially in the post-delisting period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a structural safety assessment and performance evaluation of the upper choir of the Santa Maria de Belém Church in the Jerónimos monastery, Lisbon, one of the most important cultural heritage buildings in Portugal. The possibility of adding a new 20 t organ to the upper choir and its effects on the church structure's response are presented. A refined and a simplified finite-element model is developed to investigate the structure's performance under self-weight and seismic actions. A sensitivity analysis is performed to investigate the effect of masonry mechanical properties and rib cross-sections on the structural response, given the difficulty in accurately obtaining this information. The results show that the safety level of the structure is acceptable, even in the case of adding a heavy new organ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxy adhesives are nowadays being extensively used in Civil Engineering applications, mostly in the scope of the rehabilitation of reinforced concrete (RC) structures. In this context, epoxy adhesives are used to provide adequate stress transference from fibre reinforced polymers (FRP) to the surrounding concrete substrate. Most recently, the possibility of using prestressed FRPs bonded with these epoxy adhesives is also being explored in order to maximize the potentialities of this strengthening approach. In this context, the understanding of the long term behaviour of the involved materials becomes essential. Even when non-prestressed FRPs are used a certain amount of stress is permanently applied on the adhesive interface during the serviceability conditions of the strengthened structure, and the creep of the adhesive may cause a continuous variation in the deformational response of the element. In this context, this paper presents a study aiming to experimentally characterize the tensile creep behaviour of an epoxy-based adhesive currently used in the strengthening of concrete structures with carbon FRP (CFRP) systems. To analytically describe the tensile creep behaviour, the modified Burgers model was fitted to the experimental creep curves, and the obtained results revealed that this model is capable of predicting with very good accuracy the long term behaviour of this material up to a sustained stress level of 60% of the adhesive’s tensile strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pultrusion is a versatile continuous high speed production technology allowing the production of fibre reinforced complex profiles. Thermosetting resins are normally used as matrices in the production of structural constant cross section profiles. Although only recently thermoplastic matrices have been used in long and continuous fibre reinforced composites replacing with success thermosetting matrices, the number of their applications is increasing due to their better ecological and mechanical performance. Composites with thermoplastic matrices offers increased fracture toughness, higher impact tolerance, short processing cycle time and excellent environmental stability. They are recyclable, post-formable and can be joined by welding. The use of long/continuous fibre reinforced thermoplastic matrix composites involves, however, great technological and scientific challenges since thermoplastics present much higher viscosity than thermosettings, which makes much difficult and complex the impregnation of reinforcements and consolidation tasks. In this work continuous fibres reinforced thermoplastic matrix towpregs were produced using equipment developed by the Institute for Polymers and Composites (IPC). The processing of the towpregs was made by pultrusion, in a developed prototype equipment existing in the Engineering School of the Polytechnic Institute of Porto (ISEP). Different thermoplastic matrices and fibres raw-materials were used in this study to manufacture pultruded composites for commercial applications (glass and carbon fibre/ polypropylene) and for advanced markets (carbon fibre/Primospire®). To improve the temperature distribution profile in heating die, different modifications were performed. In order to optimize both processes, towpregs production and pultruded composites profiles were analysed to determine the influence of the most relevant processing arameters in the final properties. The final pultruded composite profiles were submitted to mechanical tests to obtain the relevant properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento - Civil Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline AlN coatings deposited on Ti-electrodes films were sputtered by using nitrogen both as reactive gas and sputtering gas, in order to obtain high purity coatings with appropriate properties to be further integrated into wear resistance coatings as a piezoelectric monitoring wear sensor. The chemical composition, the structure and the morphology of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy techniques. These measurements show the formation of highly (101), (102) and (103) oriented AlN films with good piezoelectric and mechanical properties suitable for applications in electronic devices. Through the use of lower nitrogen flow a densification of the AlN coating occurs in the microstructure, with an improvement of the crystallinity along with the increase of the hardness. Thermal stability of aluminum nitride coatings at high temperature was also examined. It was found an improvement of the piezoelectric properties of the highly (10x) oriented AlN films which became c-axis (002) oriented after annealing. The mechanical behavior after heat treatment shows an important enhancement of the surface hardness and Young’s modulus, which decrease rapidly with the increase of the indentation depth until approach constant values close to the substrate properties after annealing. Thus, thermal annealing energy promotes not only the rearrangement of Al–N network, but also the occurrence of a nitriding process of unsaturated Al atoms which cause a surface hardening of the film.