2 resultados para Feature nasal

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The purpose of this work was to evaluate the potential of a novel custom-designed rigid gas permeable (RGP) contact lens to modify the relative peripheral refractive error in a sample of myopic patients. Methods. Fifty-two right eyes of 52 myopic patients (mean [TSD] age, 21 [T2] years) with spherical refractive errors ranging from j0.75 to j8.00 diopters (D) and refractive astigmatism of 1.00 D or less were fitted with a novel experimental RGP (ExpRGP) lens designed to create myopic defocus in the peripheral retina. A standard RGP (StdRGP) lens was used as a control in the same eye. The relative peripheral refractive error was measured without the lens and with each of two lenses (StdRGP and ExpRGP) using an open-field autorefractometer from 30 degrees nasal to 30 degrees temporal, in 5-degree steps. The effectiveness of the lens design was evaluated as the amount of relative peripheral refractive error difference induced by the ExpRGP compared with no lens and with StdRGP conditions at 30 degrees in the nasal and temporal (averaged) peripheral visual fields. Results. Experimental RGP lens induced a significant change in relative peripheral refractive error compared with the nolens condition (baseline), beyond the 10 degrees of eccentricity to the nasal and temporal side of the visual field (p G 0.05). The maximum effect was achieved at 30 degrees. Wearing the ExpRGP lens, 60% of the eyes had peripheral myopia exceeding j1.00 D, whereas none of the eyes presented with this feature at baseline. There was no significant correlation (r = 0.04; p = 0.756) between the degree of myopia induced at 30 degrees of eccentricity of the visual field with the ExpRGP lens and the baseline refractive error. Conclusions. Custom-designed RGP contact lenses can generate a significant degree of relative peripheral myopia in myopic patients regardless of their baselin spherical equivalent refractive error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software product lines (SPL) are diverse systems that are developed using a dual engineering process: (a)family engineering defines the commonality and variability among all members of the SPL, and (b) application engineering derives specific products based on the common foundation combined with a variable selection of features. The number of derivable products in an SPL can thus be exponential in the number of features. This inherent complexity poses two main challenges when it comes to modelling: Firstly, the formalism used for modelling SPLs needs to be modular and scalable. Secondly, it should ensure that all products behave correctly by providing the ability to analyse and verify complex models efficiently. In this paper we propose to integrate an established modelling formalism (Petri nets) with the domain of software product line engineering. To this end we extend Petri nets to Feature Nets. While Petri nets provide a framework for formally modelling and verifying single software systems, Feature Nets offer the same sort of benefits for software product lines. We show how SPLs can be modelled in an incremental, modular fashion using Feature Nets, provide a Feature Nets variant that supports modelling dynamic SPLs, and propose an analysis method for SPL modelled as Feature Nets. By facilitating the construction of a single model that includes the various behaviours exhibited by the products in an SPL, we make a significant step towards efficient and practical quality assurance methods for software product lines.