23 resultados para FUNGAL LACCASES
em Universidade do Minho
Resumo:
A Gß protein and the TupA Co-Regulator Bind to Protein Kinase A Tpk2 to Act as Antagonistic Molecular Switches of Fungal Morphological Changes
Resumo:
We assessed aquatic hyphomycete diversity in autumn and spring on oak leaves decomposing in five streams along a gradient of eutrophication in the Northwest of Portugal. Diversity was assessed through microscopy-based (identification by spore morphology) and DNA-based techniques (Denaturing Gradient Gel Electrophoresis and 454 pyrosequencing). Pyrosequencing revealed five times greater diversity than DGGE. About 21% of all aquatic hyphomycete species were exclusively detected by pyrosequencing and 26% exclusively by spore identification. In some streams, more than half of the recorded species would have remained undetected if we had relied only on spore identification. Nevertheless, in spring aquatic hyphomycete diversity was higher based on spore identification, probably because many species occurring in this season are not yet connected to ITS barcodes in genetic databases. Pyrosequencing was a powerful tool for revealing aquatic hyphomycete diversity on decomposing plant litter in streams and we strongly encourage researchers to continue the effort in barcoding fungal species.
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas
Resumo:
Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.
Mechanism of extracellular silver nanoparticles synthesis by Stereum hirsutum and Fusarium oxysporum
Resumo:
The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.
Resumo:
Brazil is one the largest producers and exporters of food commodities in the world. The evaluation of fungi capable of spoilage and the production mycotoxins in these commodities is an important issue that can be of help in bioeconomic development. The present work aimed to identify fungi of the genus Aspergillus section Flavi isolated from different food commodities in Brazil. Thirty-five fungal isolates belonging to the section Flavi were identified and characterised. Different classic phenotypic and genotypic methodologies were used, as well as a novel approach based on proteomic profiles produced by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Type or reference strains for each taxonomic group were included in this study. Three isolates that presented discordant identification patterns were further analysed using the internal transcribed spacer (ITS) region and calmodulin gene sequences. The data obtained from the phenotypic and spectral analyses divide the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus, and Aspergillus tamarii. Final polyphasic fungal identification was achieved by joining data from molecular analyses, classical morphology, and biochemical and proteomic profiles generated by MALDI-TOF MS.
Resumo:
Information available on the mycoflora associated to ripening Italian “grana type” cheese is very poor. Recently, ochratoxin A (OTA) was detected in samples of packed grated cheese [1]; therefore, the need of information to perform a risk management was highlighted. Moreover, sterigmatocystin (STC) has been reported in cheese and it is considered an emerging problem. Despite the fact that both of them are mycotoxins included in group 2B by IARC [2,3], no European regulation exists. So, the main goal of this work is to give for the first time a general overview about Penicillia and Aspergilli growing on the surface of ripening “grana type” cheese, with particular attention on mycotoxigenic species. To perform this, in 2013 and 2014 crust samples were scratched from ripening grana cheese wheels and also Potato Dextrose Agar plates were exposed to monitor ripening house air. Then, 140 fungal isolates were randomly chosen, purified and monosporic colonies were obtained for their identification at specie level. A polyphasic approach is followed, based on morphological characterisation, toxic extrolites profiling and gene sequencing. The identification is still in progress, but the first results based on the morphological approach showed the presence of mycotoxigenic Aspergilli (Aspergillus flavus and A. versicolor) and various Penicillium species; among them Penicillium chrysogenum, P. implicatum and P. solitum were identified. Only P. chrysogenum was reported to produce the mycotoxins cyclopiazonic acid (CPA) and roquefortine-C (ROQ-C) [4]. These results will be presented and discussed. [1] A. Biancardi, R. Piro, G. Galaverna, C. Dall’Asta, "A simple and reliable liquid chromatography–tandem mass spectrometry method for determination of ochratoxin A in hard cheese" International Journal of Food Sciences and Nutrition 64 (5), 2013, 632 – 640. [2] International Agency for Research on Cancer (IARC) “IARC Monographs on the Evaluation of Carcinogenic Risks to Humans” 31, 1983, 191 – 199. [3] International Agency for Research on Cancer (IARC) “IARC Monographs on the Evaluation of carcinogenic Risks to Humans”, suppl. 7, 1987, 72. [4] J. I. Pitt, D. A. Hocking, “Fungi and Food Spoilage” 1997, 291.
Resumo:
In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 µm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil. [1] HageskaL, G, Lima, N, Skaar, I. The study of fungi in drinking water. Mycological Research, 113, 2009, 165-172. [2] Skaar I, Hageskal G. Fungi in Drinking Water. In.: Paterson RRM, Lima N. (Eds.) Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi. CRC Press, Taylor & Francis Group, Boca Raton, 2015, 597-606.
Resumo:
Poster
Resumo:
[Excerpt] The incidence of fungal infections has greatly increased in patients under sustained immunosuppression with considerable risk associated. Difficulties regarding prompt diagnosis and the limited therapeutic options dictate high mortality rates. Available antifungals display substantial toxicity, a predictable consequence of the cellular structure of the organisms involved, reduced spectrum of activity, and drug interactions. Our group had previously identified three (Z)-5-amino-N'-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides 1 [aryl= phenyl (1a), 4-fluorophenyl (1b), 3fluorophenyl (1c)] as potent antifungal agents.1 (...)
Resumo:
The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.
Resumo:
Invasive aspergillosis (IA) is a life-threatening fungal disease commonly diagnosed among individuals with immunological deficits, namely hematological patients undergoing chemotherapy or allogeneic hematopoietic stem cell transplantation. Vaccines are not available, and despite the improved diagnosis and antifungal therapy, the treatment of IA is associated with a poor outcome. Importantly, the risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and microbiological exposure. Recent insights into antifungal immunity have further highlighted the complexity of host-fungus interactions and the multiple pathogen-sensing systems activated to control infection. How to decode this information into clinical practice remains however, a challenging issue in medical mycology. Here, we address recent advances in our understanding of the host-fungus interaction and discuss the application of this knowledge in potential strategies with the aim of moving toward personalized diagnostics and treatment (theranostics) in immunocompromised patients. Ultimately, the integration of individual traits into a clinically applicable process to predict the risk and progression of disease, and the efficacy of antifungal prophylaxis and therapy, holds the promise of a pioneering innovation benefiting patients at risk of IA.
Resumo:
Fusarium verticillioides is considered one of the most important global sources of fumonisin contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)5 and (GACA)4. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol)