8 resultados para Extremal polynomial ultraspherical polynomials
em Universidade do Minho
Resumo:
The theory of orthogonal polynomials of one real or complex variable is well established as well as its generalization for the multidimensional case. Hypercomplex function theory (or Clifford analysis) provides an alternative approach to deal with higher dimensions. In this context, we study systems of orthogonal polynomials of a hypercomplex variable with values in a Clifford algebra and prove some of their properties.
Resumo:
This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
We study the low frequency absorption cross section of spherically symmetric nonextremal d-dimensional black holes. In the presence of α′ corrections, this quantity must have an explicit dependence on the Hawking temperature of the form 1/TH. This property of the low frequency absorption cross section is shared by the D1-D5 system from type IIB superstring theory already at the classical level, without α′ corrections. We apply our formula to the simplest example, the classical d-dimensional Reissner-Nordstr¨om solution, checking that the obtained formula for the cross section has a smooth extremal limit. We also apply it for a d-dimensional Tangherlini-like solution with α′3 corrections.
Resumo:
We analyze the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes in string theory, namely the D1–D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section always has the form of some parameter of the solution divided by the black hole Hawking temperature. We also verify in each case that, despite its explicit temperature dependence, such quotient is finite in the extremal limit, giving a well defined cross section. We show that this precise explicit temperature dependence also arises in the same cross section for black holes with string \alpha' corrections: it is actually induced by them.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil