24 resultados para Experimental performance metrics
em Universidade do Minho
Resumo:
Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility.
Resumo:
High performance fiber reinforced concrete (HPFRC) is developing rapidly to a modern structural material with unique rheological and mechanical characteristics. Despite applying several methodologies to achieve self15 compacting requirements, some doubts still remain regarding the most convenient strategy for developing a HPFRC. In the present study, an innovative mix design method is proposed for the development of high17 performance concrete reinforced with a relatively high dosage of steel fibers. The material properties of the developed concrete are assessed, and the concrete structural behavior is characterized under compressive, flexural and shear loading. This study better clarifies the significant contribution of fibers for shear resistance of concrete elements. This paper further discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.
Resumo:
High performance concrete (HPC) offers several advantages over normal-strength concrete, namely, high mechanical strength and high durability. Therefore, HPC allows for concrete structures with less steel reinforcement and a longer service life, both of which are crucial issues in the eco-efficiency of construction materials. Nevertheless international publications on the field of concrete containing nanoparticles are scarce when compared to Portland cement concrete (around 1%) of the total international publications. HPC nanoparticle-based publications are even scarcer. This article presents the results of an experimental investigation on the mechanical properties and durability of HPC based on nano-TiO2 and fly ash. The durability performance was assessed by means of water absorption by immersion, water absorption by capillarity, ultrasonic pulse velocity, electric resistivity, chloride diffusion and resistance to sulphuric acid attack. The results show that the concretes containing an increased content of nano-TiO2 show decreased durability performance. The results also show that concrete with 1% nano-TiO2 and 30% fly ash as Portland cement replacement show a high mechanical strength (C55/C67) and a high durability. However, it should be noted that the cost of nano-TiO2 is responsible for a severe increase in the cost of concrete mixtures.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).
Resumo:
The authors thank the federal agency CAPES and the Foundation for Research Support of the state of Sao Paulo, Brazil (FAPESP) for providing a PhD scholarship, and the University of Minho, in Portugal, for the international collaboration.
Resumo:
The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.
Resumo:
Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.
Resumo:
A conventional method for seismic strengthening of masonry walls is externally application of reinforced concrete layer (shotcrete). However, due to the lack of analytical and experimental information on the behavior of strengthened walls, the design procedures are usually followed based on the empirical relations. Using these design procedures have resulted in massive strengthening details in retrofitting projects. This paper presents a computational framework for nonlinear analysis of strengthened masonry walls and its versatility has been verified by comparing the numerical and experimental results. Based on the developed numerical model and available experimental information, design relations and failure modes are proposed for strengthened walls in accordance with the ASCE 41 standard. Finally, a sample masonry structure has been strengthened using the proposed and available conventional methods. It has been shown that using the proposed method results in lower strengthening details and appropriate (ductile) failure modes
Resumo:
The use of Near Surface Mounted (NSM) Fiber Reinforced Polymers (FRPs) for strengthening masonry structures can be a suitable substitute for Externally Bonded Reinforcement (EBR) technique. NSM technique has many advantages such as larger bonded area, better anchorage capacity, higher resistance, higher percentage exploitation of the FRP and reduced installation time. However, information regarding the effectiveness of this strengthening technique for masonry structures is scarce and characterization of the critical mechanisms such as bond behavior is necessary. This paper presents experimental investigation of the bond performance in NSM-strengthened brick specimens. CFRP laminates are used for NSM strengthening of masonry bricks with different bonded lengths. The bond between FRP and masonry substrate is investigated by performing conventional pull-out tests and the experimental results are presented and discussed.
Resumo:
The dearth of knowledge on the load resistance mechanisms of log houses and the need for developing numerical models that are capable of simulating the actual behaviour of these structures has pushed efforts to research the relatively unexplored aspects of log house construction. The aim of the research that is presented in this paper is to build a working model of a log house that will contribute toward understanding the behaviour of these structures under seismic loading. The paper presents the results of a series of shaking table tests conducted on a log house and goes on to develop a numerical model of the tested house. The finite element model has been created in SAP2000 and validated against the experimental results. The modelling assumptions and the difficulties involved in the process have been described and, finally, a discussion on the effects of the variation of different physical and material parameters on the results yielded by the model has been drawn up.
Resumo:
Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.
Resumo:
The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe inplane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textilereinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.