3 resultados para Excretion rates
em Universidade do Minho
Resumo:
In this work four asphalt mixtures were compared in terms of mechanical characteristics. One of the mixtures (control mixture) was used as a reference to the study of three mixtures produced with reclaimed asphalt pavement (RAP). One of the recycled mixtures incorporated 30% of RAP and the other two were produced with 50% of RAP. The effect of using a rejuvenator additive (3% rejuvenator) was also evaluated in one of the mixtures with 50% of RAP.
Resumo:
Wild boar (Sus scrofa) and red deer (Cervus elaphus) are the main maintenance hosts for bovine tuberculosis (bTB) in continental Europe. Understanding Mycobacterium tuberculosis complex (MTC) excretion routes is crucial to define strategies to control bTB in free-ranging populations, nevertheless available information is scarce. Aiming at filling this gap, four different MTC excretion routes (oronasal, bronchial-alveolar, fecal and urinary) were investigated by molecular methods in naturally infected hunter-harvested wild boar and red deer. In addition MTC concentrations were estimated by the Most Probable Number method. MTC DNA was amplified in all types of excretion routes. MTC DNA was amplified in at least one excretion route from 83.0% (CI95 70.8-90.8) of wild ungulates with bTB-like lesions. Oronasal or bronchial-alveolar shedding were detected with higher frequency than fecal shedding (p < 0.001). The majority of shedders yielded MTC concentrations <10(3) CFU/g or mL. However, from those ungulates from which oronasal, bronchial-alveolar and fecal samples were available, 28.2% of wild boar (CI95 16.6-43.8) and 35.7% of red deer (CI95 16.3-61.2) yielded MTC concentrations >10(3) CFU/g or mL (referred here as super-shedders). Red deer have a significantly higher risk of being super-shedders compared to wild boar (OR = 11.8, CI95 2.3-60.2). The existence of super-shedders among the naturally infected population of wild boar and red deer is thus reported here for the first time and MTC DNA concentrations greater than the minimum infective doses were estimated in excretion samples from both species.
Resumo:
Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano âgalvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against S.epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive \OCP\ value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 hours, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.