15 resultados para Enhances Recognition

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometric systems are increasingly being used as a means for authentication to provide system security in modern technologies. The performance of a biometric system depends on the accuracy, the processing speed, the template size, and the time necessary for enrollment. While much research has focused on the first three factors, enrollment time has not received as much attention. In this work, we present the findings of our research focused upon studying user’s behavior when enrolling in a biometric system. Specifically, we collected information about the user’s availability for enrollment in respect to the hand recognition systems (e.g., hand geometry, palm geometry or any other requiring positioning the hand on an optical scanner). A sample of 19 participants, chosen randomly apart their age, gender, profession and nationality, were used as test subjects in an experiment to study the patience of users enrolling in a biometric hand recognition system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study describes the in vitro phosphorylation of a human hair keratin, using protein kinase for the first time. Phosphorylation of keratin was demonstrated by 31P NMR (Nuclear Magnetic Resonance) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques. Phosphorylation induced a 2.5 fold increase of adsorption capacity in the first 10 minutes for cationic moiety like Methylene Blue (MB). Thorough description of MB adsorption process was performed by several isothermal models. Reconstructed fluorescent microscopy images depict distinct amounts of dye bound to the differently treated hair. The results of this work suggest that the enzymatic phosphorylation of keratins might have significant implications in hair shampooing and conditioning, where short application times of cationic components are of prime importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Eletrónica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work explores the best conditions for the enzymatic synthesis of poly (ethylene glutarate) for the first time. The start-up materials are the liquids; diethyl glutarate and ethylene glycol diacetate, without the need of addition of extra solvent. The reactions are catalyzed by lipase B from Candida antarctica immobilized on glycidyl methacrylate-ter-divinylbenzene-ter-ethylene glycol dimethacrylate at 40 °C during 18 h in water bath with mechanical stirring or 1 h in ultrasonic bath followed by 6 h in vacuum in both the cases for evaporation of ethyl acetate. The application of ultrasound significantly intensified the polyesterification reaction with reduction of the processing time from 24 to 7 h. The same degree of polymerization was obtained for the same enzyme loading in less time of reaction when using the ultrasound treatment. The degree of polymerization for long-term polyesterification was improved approximately 8-fold due to the presence of sonication during the reaction. The highest degree of polymerization achieved was 31, with a monomer conversion of 96.77%. The ultrasound treatment demonstrated to be an effective green approach to intensify the polyesterification reaction with enhanced initial kinetics and high degree of polymerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of α-amylase degradation on the release of gentamicin from starch-conjugated chitosan microparticles was investigated up to 60 days. Scanning electron microscopic observations showed an increase in the porosity and surface roughness of the microparticles as well as reduced diameters. This was confirmed by 67% weight loss of the microparticles in the presence of α-amylase. Over time, a highly porous matrix was obtained leading to increased permeability and increased water uptake with possible diffusion of gentamicin. Indeed, a faster release of gentamicin was observed with α-amylase. Starch-conjugated chitosan particles are non-toxic and highly biocompatible for an osteoblast (SaOs-2) and fibroblast (L929) cell line as well as adipose-derived stem cells. When differently produced starch-conjugated chitosan particles were tested, their cytotoxic effect on SaOs-2 cells was found to be dependent on the crosslinking agent and on the amount of starch used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural mineral waters (still), effervescent natural mineral waters (sparkling) and aromatized waters with fruit-flavors (still or sparkling) are an emerging market. In this work, the capability of a potentiometric electronic tongue, comprised with lipid polymeric membranes, to quantitatively estimate routinely quality physicochemical parameters (pH and conductivity) as well as to qualitatively classify water samples according to the type of water was evaluated. The study showed that a linear discriminant model, based on 21 sensors selected by the simulated annealing algorithm, could correctly classify 100 % of the water samples (leave-one out cross-validation). This potential was further demonstrated by applying a repeated K-fold cross-validation (guaranteeing that at least 15 % of independent samples were only used for internal-validation) for which 96 % of correct classifications were attained. The satisfactory recognition performance of the E-tongue could be attributed to the pH, conductivity, sugars and organic acids contents of the studied waters, which turned out in significant differences of sweetness perception indexes and total acid flavor. Moreover, the E-tongue combined with multivariate linear regression models, based on sub-sets of sensors selected by the simulated annealing algorithm, could accurately estimate waters pH (25 sensors: R 2 equal to 0.99 and 0.97 for leave-one-out or repeated K-folds cross-validation) and conductivity (23 sensors: R 2 equal to 0.997 and 0.99 for leave-one-out or repeated K-folds cross-validation). So, the overall satisfactory results achieved, allow envisaging a potential future application of electronic tongue devices for bottled water analysis and classification.