33 resultados para Energy harvesting, convertitore, conversione attiva

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flexible and low cost energy harvester device based on the magnetoelectric (ME) effect has been designed using Fe64Co17Si7B12 as amorphous magnetostrictive ribbons and PVDF as the piezoelectric element. Sandwich-type laminated composite of 3 cm long has been fabricated by gluing these ribbons to the PVDF with the Devcon 5 minute epoxy. Good power output and power density of 6.4 μW and 1.5 mW/cm3, respectively, have been obtained through a multiplier circuit. All values have been measured at the magnetomechanical resonance of the laminate. The effect of the length of the ME laminate on the power output has been also studied, exhibiting a decay as the length of the ME laminate does. Nevertheless, good performance of such device has been obtained for a 0.5 cm long device, working already at 337 KHz, within the low radio frequency (LRF) range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy harvesting efficiency of poly(vinylidene fluoride-trifluoroethylene) spin coated films and its nanocomposites with piezoelectric BaTiO3 have been investigated as a function of ceramic filler size and content. It is found that the best energy harvesting performance of ~0.28 W is obtained for the nanocomposite samples with 20% filler content of 10 nm size particles and for 5% filler content for the 100 and 500 nm size fillers. For the larger filler average sizes, the power decreases for filler contents above 5% due to increase of the mechanical stiffness of the samples. Due to the similar dielectric characteristics of the samples, the performance is mainly governed by the mechanical response. The obtained power values, easy processing and the low cost and robustness of the polymer, allow the implementation of the material for micro and nanogenerator applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Materiais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Companies and researchers involved in developing miniaturized electronic devices face the basic problem of the needed batteries size, finite life of time and environmental pollution caused by their final deposition. The current trends to overcome this situation point towards Energy Harvesting technology. These harvesters (or scavengers) store the energy from sources present in the ambient (as wind, solar, electromagnetic, etc) and are costless for us. Piezoelectric devices are the ones that show a higher power density, and materials as ceramic PZT or polymeric PVDF have already demonstrated their ability to act as such energy harvester elements. Combinations between piezoelectric and electromagnetic mechanism have been also extensively investigated. Nevertheless, the power generated by these combinations is limited under the application of small magnetic fields, reducing the performance of the energy harvester [1]. In the last years the appearance of magnetoelectric (ME) devices, in which the piezoelectric deformation is driven by the magnetostrictive element, enables to extract the energy of very small electromagnetic signals through the generated magnetoelectric voltage at the piezoelectric element. However, very little work has been done testing PVDF polymer as piezoelectric constituent of the ME energy harvester device, and only to be proposed as a possibility of application [2]. Among the advantages of using piezopolymers for vibrational energy harvesting we can remember that they are ductile, resilient to shock, deformable and lightweight. In this work we demonstrate the feasibility of using magnetostrictive Fe-rich magnetic amorphous alloys/piezoelectric PVDF sandwich-type laminated ME devices as energy harvesters. A very simple experimental set-up will show how these laminates can extract energy, in amounts of μW, from an external AC field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tri-layered and bi-layered magnetoelectric (ME) flexible composite structures of varying geometries and sizes consisting on magnetostrictive Vitrovac and piezoelectric poly(vinylidene fluoride) (PVDF) layers were fabricated by direct bonding. From the ME measurements it was determined that tri-layered composites structures (magnetostrictive-piezoelectric-magnetostrictive type), show a higher ME response (75 V.cm-1.Oe-1) than the bi-layer structure (66 V.cm 1.Oe-1). The ME voltage coefficient decreased with increasing longitudinal size aspect ratio between PVDF and Vitrovac layers (from 1.1 to 4.3), being observed a maximum ME voltage coefficient of 66 V.cm-1.Oe-1. It was also observed that the composite with the lowest transversal aspect ratio between PVDF and Vitrovac layers resulted in better ME performance than the structures with higher transversal size aspect ratios. It was further determined an intimate relation between the Vitrovac PVDF Area Area ratio and the ME response of the composites. When such ratio values approach 1, the ME response is the largest. Additionally the ME output value and magnetic field response was controlled by changing the number of Vitrovac layers, which allows the development of magnetic sensors and energy harvesting devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainability is frequently defined by its three pillars: economically viable, socially equitable, and environmentally bearable. Consequently the evaluation of the sustainability of any decision, public or private, requires information on these three dimensions. This paper focuses on social sustainability. In the context of renewable energy sources, the examination of social sustainability requires the analysis of not only the efficiency but also the equity of its welfare impacts. The present paper proposes and applies a methodology to generate the information necessary to do a proper welfare analysis of the social sustainability of renewable energy production facilities. This information is key both for an equity and an efficiency analysis. The analysis focuses on the case of investments in renewable energy electricity production facilities, where the impacts on local residents’ welfare are often significantly different than the welfare effects on the general population. We apply the contingent valuation method to selected facilities across the different renewable energy power plants located in Portugal and conclude that local residents acknowledge differently the damage sustained by the type, location and operation of the plants. The results from these case studies attest to the need of acknowledging and quantifying the negative impacts on local communities when assessing the economic viability, social equity and environmental impact of renewable energy projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development of the power electronics needed for the interaction between the electrical generator of a wind turbine and an isolated ac micro grid. In this system there are basically two types of receptors for the energy produced by the wind turbine, which are the loads connected to the isolated micro grid and the batteries used to store energy. There are basically two states in which the system will work. One of the states is when there is enough wind power to supply the loads and the extra energy is used to charge the batteries. The other state is when there is low wind power and the batteries have to compensate the lack of power, so that the isolated micro grid has enough power to supply at least the priority loads. In this paper are presented the hardware and the control algorithm for the developed system. The topology was previously tested in computer simulations, using the software PSIM 9.0, and then validated with the implementation of a laboratory prototype.