34 resultados para Energy consumption survey

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The building sector is one of the Europeâ s main energy consumer, making buildings an important target for a wiser energy use, improving indoor comfort conditions and reducing the energy consumption. To achieve the European Union targets for energy consumption and carbon reductions it is crucial to act in new, but also in existing buildings, which constitute the majority of the building stock. In existing buildings, the significant improvement of their efficiency requires important investments. Therefore, costs are a major concern in the decision making process and the analysis of the cost effectiveness of the interventions is an important path in the guidance for the selection of the different renovation scenarios. The Portuguese thermal legislation considers the simple payback method for the calculations of the time for the return of the investment. However, this method does not take into consideration inflation, cash flows and cost of capital, as well as the future costs of energy and the building elements lifetime as it happens in a life cycle cost analysis. In order to understand the impact of the economic analysis method used in the choice of the renovation measures, a case study has been analysed using simple payback calculations and life cycle costs analysis. Overall results show that less far-reaching renovation measures are indicated when using the simple payback calculations which may be leading to solutions less cost-effective in a long run perspective.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Construction sector is one of the major responsible for energy consumption and carbon emissions and renovation of existing buildings plays an important role in the actions to mitigate climate changes. Present work is based on the methodology developed in IEA Annex 56, allowing identifying cost optimal and cost effective renovation scenarios improving the energy performance. The analysed case study is a residential neighbourhood of the municipality of Gaia in Portugal. The analysis compares a reference renovation scenario (without improving the energy performance of the building) with a series of alternative renovation scenarios, including the one that is being implemented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Building sector has become an important target for carbon emissions reduction, energy consumption and resources depletion. Due to low rates of replacement of the existing buildings, their low energy performances are a major concern. Most of the current regulations are focused on new buildings and do not account with the several technical, functional and economic constraints that have to be faced in the renovation of existing buildings. Thus, a new methodology is proposed to be used in the decision making process for energy related building renovation, allowing finding a cost-effective balance between energy consumption, carbon emissions and overall added value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the outcomes of a research work consisting in the development of an Electric Vehicle Assistant (EVA), which creates and stores a driver profile where are contained the driving behaviours related with the EV energy consumption, the EV battery charging information, and the performed routes. This is an application for mobile devices that is able to passively track the driver behaviour and to access several information related with the EV in real time. It is also proposed a range prediction approach based on probability to take into account unpredictable effects of personal driving style, traffic or weather.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Construção e Reabilitação Sustentáveis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Construção e Reabilitação Sustentáveis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays natural ventilation has gained prominence because its correct use can reduce energy consumption for cooling systems and improve thermal comfort among users. In this paper, we report on the modelling initiative, based on the wind tunnel tests that were carried out for the determination of the influence of natural ventilation in buildings. Indeed, the renewal of air in a closed environment without using an air conditioning system with mechanical elements can lead to energy savings and, in addition, provide air quality.The wind tunnel tests were carried out by varying the positioning of six ventilation modules in the façade system configuration. The modules were positioned below the window-sill (ventilated window-sill) as well as separately above and below the façade. The wind speed measurements were taken inside and outside the model for the different façades configurations to evaluate the best performance in relation to natural ventilation. The results supported the positioning of the six ventilation modules below the window-sill, forming a â ventilated window-sillâ as the most effective natural ventilation solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The International Energy Agency established an Implementing Agreement within the Energy in Buildings and Communities Program to undertake research and provide an international focus on Cost Effective Energy and Carbon Emissions Optimization in Building Renovation (EBC Annex 56). The project aims at developing a new methodology to enable cost effective renovation of existing buildings while optimizing energy consumption and carbon emissions reduction. Gathering of case studies is one of the activities undertaken to reach the overall project. Of the case studies a selection of â Shining Examplesâ is made to encourage decision makers to promote efficient and cost effective renovations. This paper presents the results of the analyses made on the Shining Examples.