13 resultados para Electron gas

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline AlN coatings deposited on Ti-electrodes films were sputtered by using nitrogen both as reactive gas and sputtering gas, in order to obtain high purity coatings with appropriate properties to be further integrated into wear resistance coatings as a piezoelectric monitoring wear sensor. The chemical composition, the structure and the morphology of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy techniques. These measurements show the formation of highly (101), (102) and (103) oriented AlN films with good piezoelectric and mechanical properties suitable for applications in electronic devices. Through the use of lower nitrogen flow a densification of the AlN coating occurs in the microstructure, with an improvement of the crystallinity along with the increase of the hardness. Thermal stability of aluminum nitride coatings at high temperature was also examined. It was found an improvement of the piezoelectric properties of the highly (10x) oriented AlN films which became c-axis (002) oriented after annealing. The mechanical behavior after heat treatment shows an important enhancement of the surface hardness and Young’s modulus, which decrease rapidly with the increase of the indentation depth until approach constant values close to the substrate properties after annealing. Thus, thermal annealing energy promotes not only the rearrangement of Al–N network, but also the occurrence of a nitriding process of unsaturated Al atoms which cause a surface hardening of the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp→Z/γ∗→l+l−, with l being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at s√ = 7 TeV, corresponding to an integrated luminosity of 4.8 fb−1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing angle of 0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate changes in anterior corneal topography and higher-order aberrations (HOA) after 14-days of rigid gas-permeable (RGP) contact lens (CL) wear in keratoconus subjects comparing two different fitting approaches. Methods: Thirty-one keratoconus subjects (50 eyes) without previous history of CL wear were recruited for the study. Subjects were randomly fitted to either an apical-touch or three-pointtouch fitting approach. The lens’ back optic zone radius (BOZR) was 0.4 mm and 0.1 mm flatter than the first definite apical clearance lens, respectively. Differences between the baseline and post-CL wear for steepest, flattest and average corneal power (ACP) readings, central corneal astigmatism (CCA), maximum tangential curvature (KTag), anterior corneal surface asphericity, anterior corneal surface HOA and thinnest corneal thickness measured with Pentacam were compared. Results: A statistically significant flattening was found over time on the flattest and steepest simulated keratometry and ACP in apical-touch group (all p < 0.01). A statistically significant reduction in KTag was found in both groups after contact lens wear (all p < 0.05). Significant reduction was found over time in CCA (p = 0.001) and anterior corneal asphericity in both groups (p < 0.001). Thickness at the thinnest corneal point increased significantly after CL wear (p < 0.0001). Coma-like and total HOA root mean square (RMS) error were significantly reduced following CL wearing in both fitting approaches (all p < 0.05). Conclusion: Short-term rigid gas-permeable CL wear flattens the anterior cornea, increases the thinnest corneal thickness and reduces anterior surface HOA in keratoconus subjects. Apicaltouch was associated with greater corneal flattening in comparison to three-point-touch lens wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The purpose of this work was to evaluate the potential of a novel custom-designed rigid gas permeable (RGP) contact lens to modify the relative peripheral refractive error in a sample of myopic patients. Methods. Fifty-two right eyes of 52 myopic patients (mean [TSD] age, 21 [T2] years) with spherical refractive errors ranging from j0.75 to j8.00 diopters (D) and refractive astigmatism of 1.00 D or less were fitted with a novel experimental RGP (ExpRGP) lens designed to create myopic defocus in the peripheral retina. A standard RGP (StdRGP) lens was used as a control in the same eye. The relative peripheral refractive error was measured without the lens and with each of two lenses (StdRGP and ExpRGP) using an open-field autorefractometer from 30 degrees nasal to 30 degrees temporal, in 5-degree steps. The effectiveness of the lens design was evaluated as the amount of relative peripheral refractive error difference induced by the ExpRGP compared with no lens and with StdRGP conditions at 30 degrees in the nasal and temporal (averaged) peripheral visual fields. Results. Experimental RGP lens induced a significant change in relative peripheral refractive error compared with the nolens condition (baseline), beyond the 10 degrees of eccentricity to the nasal and temporal side of the visual field (p G 0.05). The maximum effect was achieved at 30 degrees. Wearing the ExpRGP lens, 60% of the eyes had peripheral myopia exceeding j1.00 D, whereas none of the eyes presented with this feature at baseline. There was no significant correlation (r = 0.04; p = 0.756) between the degree of myopia induced at 30 degrees of eccentricity of the visual field with the ExpRGP lens and the baseline refractive error. Conclusions. Custom-designed RGP contact lenses can generate a significant degree of relative peripheral myopia in myopic patients regardless of their baselin spherical equivalent refractive error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate neophyte contact lens wearers’ fitting to rigid gas permeable (RGP) contact lenses in terms of wearing time, tear volume, stability, corneal staining, and subjective ratings, over a 1-month period of time. Methods: Twenty-two young healthy subjects were enrolled for wearing RGP on a daily wear basis. The participants included in this study never wore contact lenses and showed a value under 10 in McMonnies Questionnaire. Contact Lens Dry Eye Questionnaire, Visual Analog Scales, Schirmer test, tear film break-up time (BUT), and corneal staining grading were performed. Follow-up visits were scheduled at 1, 7, 15, and 28 days. Results: Six subjects dropped out due to discomfort from the study before 1 month (27% of discontinuation rate). Successful RGP wearers (16 participants) achieved high levels of subjective vision and reported comfort scores of approximately 9 of 10 between 10 and 15 days. They reported wearing their lenses for an average of 10.1262.43 hr after 1 month of wear. Conversely, unsuccessful wearers discontinued wearing the lenses after the first 10 to 15 days, showing comfort scores and wearing time significantly lower compared with the first day of wear. Schirmer test showed a signifi- cant increase at 10 days (P,0.001), and the BUT trends decreased after the first week of wear in unsuccessful group. Conclusions: Symptomatology related with dryness and discomfort, detected during the first 10 days of the adaptation, may help the clinician to predict those participants who will potentially fail to adapt to RGP lens wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

tThis work is devoted to the investigation of zirconium oxynitride (ZrOxNy) films with varied opticalresponses prompted by the variations in their compositional and structural properties. The films wereprepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N2+ O2(17:3).The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gasflows to red-brownish for intermediate gas flows. Associated to this colour change there was a significantdecrease of brightness. With further increase of the reactive gas flow, the colour of the samples changedfrom red-brownish to dark blue or even to interference colourations. The variations in composition dis-closed the existence of four different zones, which were found to be closely related with the variationsin the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirco-nium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallizedover-stoichiometric nitride phase, which may be similar to that of Zr3N4with some probable oxygeninclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For highreactive gas flows, the films developed an oxynitride-type phase, similar to that of -Zr2ON2with someoxygen atoms occupying some of the nitrogen positions, evolving to a ZrO2monoclinic type structurewithin the zone where films were prepared with relatively high reactive gas flows. The analysis carriedout by reflected electron energy loss spectroscopy (REELS) revealed a continuous depopulation of thed-band and an opening of an energy gap between the valence band (2p) and the Fermi level close to 5 eV.The ZrN-based coatings (zone I and II) presented intrinsic colourations, with a decrease in brightness anda colour change from bright yellow to golden yellow, red brownish and dark blue. Associated to thesechanges, there was also a shift of the reflectivity minimum to lower energies, with the increase of thenon-metallic content. The samples lying in the two last zones (zone III, oxynitride and zone IV, oxide films)revealed a typical semi-transparent-optical behaviour showing interference-like colourations only dueto the complete depopulation of the d band at the Fermi level. The samples lying in these zones presentedalso an increase of the optical bandgap from 2 to 3.6 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Materiais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Materiais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.electacta.2015.09.169.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatic amines resulted from azo dyes biotransformation under anaerobic conditions are generally recalcitrant to further anaerobic degradation. The catalytic effect of carbon materials (CM) on the reduction of azo dyes is known and has been confirmed in this work by increasing 3-fold the biological reduction rate of Mordant Yellow 1 (MY1). The resulting m-nitroaniline (m-NoA) was further degraded to m-phenylenediamine (m-Phe) only in the presence of CM. The use of CM to degraded anaerobically aromatic amines resulted from azo dye reduction was never reported before. In the sequence, we studied the effect of different CM on the bioreduction of o-, m- and p-NoA. Three microporous activated carbons with different surface chemistry, original (AC0), chemical oxidized with HNO3 (ACHNO3) and thermal treated (ACH2), and three mesoporous carbons, xerogels (CXA and CXB) and nanotubes (CNT) were assessed. In the absence of CM, NoA were only partially reduced to the corresponding Phe, whereas in the presence of CM, more than 90% was converted to the corresponding Phe. ACH2 and AC0 were the best electron shuttles, increasing the rates up to 8-fold. In 24h, the biological treatment of NoA and MY1 with AC0, decreased up to 88% the toxicity towards a methanogenic consortium, as compared to the non-treated solutions. This article is protected by copyright. All rights reserved