18 resultados para Electron Donor- Acceptor properties

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolism of methanogenic archaea is inhibited by 2-bromoethanesulfonate (BES). Methane production is blocked because BES is an analog of methyl-coenzyme M and competes with this key molecule in the last step of methanogenesis. For this reason, BES is commonly used in several studies to avoid growth of acetoclastic and hydrogenotrophic methanogens [1]. Despite its effectiveness as methanogenic inhibitor, BES was found to alter microbial communities’ structure, to inhibit the metabolism of non-methanogenic microorganisms and to stimulate homoacetogenic metabolism [2,3]. Even though sulfonates have been reported as electron acceptors for sulfate- and sulfite-reducing bacteria (SRB), only one study described the reduction of BES by complex microbial communities [4]. In this work, a sulfate-reducing bacterium belonging to Desulfovibrio genus (98 % identity at the 16S rRNA gene level with Desulfovibrio aminophilus) was isolated from anaerobic sludge after several successive transfers in anaerobic medium containing BES as sole substrate. Sulfate was not supplemented to the anaerobic growth medium. This microorganism was able to grow under the following conditions: on BES plus H2/CO2 in bicarbonate buffered medium; on BES without H2/CO2 in bicarbonate buffered medium; and on BES in phosphate buffered medium. The main products of BES utilization were sulfide and acetate, the former was produced by the reduction of sulfur from the sulfonate moiety of BES and the latter likely originated from the carbon backbone of the BES molecule. BES was found, in this study, to represent not only an alternative electron acceptor but also to serve as electron donor, and sole carbon and energy source, supporting growth of a Desulfovibrio sp. obtained in pure culture. This is the first study that reports growth of SRB with BES as electron donor and electron acceptor, showing that the methanogenic inhibitor is a substrate for anaerobic growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Química Medicinal

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of organic materials displaying high two-photon absorption (TPA) has attracted much attention in recent years due to a variety of potential applications in photonics and optoelectronics, such as three-dimensional optical data storage, fluorescence imaging, two-photon microscopy, optical limiting, microfabrication, photodynamic therapy, upconverted lasing, etc. The most frequently employed structural motifs for TPA materials are donor–pi bridge–acceptor (D–pi–A) dipoles, donor–pi bridge–donor (D–pi–D) and acceptor–pi bridge-acceptor (A–pi–A) quadrupoles, octupoles, etc. In this work we present the synthesis and photophysical characterization of quadrupolar heterocyclic systems with potential applications in materials and biological sciences as TPA chromophores. Indole is a versatile building block for the synthesis of heterocyclic systems for several optoelectronic applications (chemosensors, nonlinear optical, OLEDs) due to its photophysical properties and donor electron ability and 4H-pyran-4-ylidene fragment is frequently used for the synthesis of red light-emitting materials. On the other hand, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric (2) units are usually used as strong acceptor moieties for the preparation of π-conjugated systems of the push-pull type. These building blocks were prepared by Knoevenagel condensation of the corresponding ketone precursor with malononitrile or 1,3-diethyl-dihydro-2-thiobarbituric acid. The new quadrupolar 4H-pyran-4-ylidene fluorophores (3) derived from indole were prepared through condensation of 5-methyl-1H-indole-3-carbaldehyde with the acceptor precursors 1 and 2, in the presence of a catalytical amount of piperidine. The new compounds were characterized by the usual spectroscopic techniques (UV-vis., FT-IR and multinuclear NMR - 1H, 13C).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline AlN coatings deposited on Ti-electrodes films were sputtered by using nitrogen both as reactive gas and sputtering gas, in order to obtain high purity coatings with appropriate properties to be further integrated into wear resistance coatings as a piezoelectric monitoring wear sensor. The chemical composition, the structure and the morphology of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy techniques. These measurements show the formation of highly (101), (102) and (103) oriented AlN films with good piezoelectric and mechanical properties suitable for applications in electronic devices. Through the use of lower nitrogen flow a densification of the AlN coating occurs in the microstructure, with an improvement of the crystallinity along with the increase of the hardness. Thermal stability of aluminum nitride coatings at high temperature was also examined. It was found an improvement of the piezoelectric properties of the highly (10x) oriented AlN films which became c-axis (002) oriented after annealing. The mechanical behavior after heat treatment shows an important enhancement of the surface hardness and Young’s modulus, which decrease rapidly with the increase of the indentation depth until approach constant values close to the substrate properties after annealing. Thus, thermal annealing energy promotes not only the rearrangement of Al–N network, but also the occurrence of a nitriding process of unsaturated Al atoms which cause a surface hardening of the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stents are rigid and perforated tubular structures, which are inserted into blood vessels in order to prevent or inhibit the constriction of blood flow, restoring the normal blood flow, when blood vessels are clogged, being used in 70% of angioplasties. These medical devices assume great importance in the treatment of cardiovascular diseases (CVD) which are the leading cause of death worldwide. In the European Union CVD account for 40% of deaths and assume an estimated annual cost of 196 billion euros[1]. Stents must possess certain requirements, in order to, adequately, perform its function, such as biocompatibility (so that its use does not c ause damage on the health of its user), mechanical strength, radiopacity (so that it is easy to view), longitudinal flexibility, ease of handling, corrosion resistance and having high strength and high radial expansion ability to recover. Stents can be made of different materials, but metals, particularly stainless steel, are the most common. However, metallic stents present several dRawbacks such as corrosion and restenosis, leading to health complications for the patient, or even death. In order to minimize these disadvantages, new materials, like fibrous materials, have been used [2]. Monofilaments present high potential for stents development because, in addition to its biocompatibility, these materials allow the application of various surface treatments, such as antibacterial coatings. Furthermore, monofilament exhibit excellent mechanical properties, like greater stiffness and good results when subjected to compression, tensile and bending forces, since these forces will be directly supported by the monofilament [3]. To minimize the reaction of the human body and Limit the adhesion of microorganisms to the stent surface, some coatings have been developed, including the use of novel metals with antimicrobial properties, like silver. The main objective of this study was the development of fibrous stents, incorporation of silver oxide nanocoating. For the development of the stent, polyester monofilaments with 0.27mm of diameter were used in braiding technology, with a mandrel diameter of 6mm and a braiding angle of 35⁰. The mechanical behaviour of the stent were evaluated by mechanical testing under longitudinal and radial compression, bending. The results of compressive strength tests are according with value from literature: 1.13 to 2.9 N for radial compression and 0. 16-5.28N to longitudinal compression. From literature is also possible to verify that stents must present 75% of unchanged diameter during the bending test and must possess a porosity between 70% and 80% [4]. The produced polyester stent presents values of 1.29N for radial compression, 0.23N for longitudinal compression, 80% of porosity and 85.5% of unchanged diameter, during bending tests. For the antibacterial functionalization, silver oxide nanocoatings were prepared, through reactive magnetron g, with an Ag target in an Ar +O2 atmosphere. In order to evaluate the nanostructure and morphology of the coatings, d ifferent technique s like X-ray diffraction (XRD), scanning electron microscopy (SEM) and and X- ray photoelectron spectroscopy (XPS were used. From the analyses of XRD it is possible to verify that the peaks corresponds to planes of Ag2 O and MATERIAIS 2015 Porto, 21-23 June, 2015 characterize a cubic phase. The presence of Ag2 O is corroborated by XPS spectrum, where it is possible to observe silver, not only, in oxide state, but a lso in mettalic state, and it is possible to verify the presence of silver clusters, confirmed by SEM analysis. Films’ roughness and topography, parameters influencing the wettability of the surface and microorganism adhesion, were measured by Atomic Force Microscopy (AFM), and it was observed that the roughness is very low (under 10 nm). Coatings’ hydrophobicity and surface tension parameters were determined by contact angle measurement, and it was verified the hydrophobic behavior of the coatings. For antibacterial tests were used Staphylococcus epidermidis strain (IE186) and Staphylococcus aureus(ATCC 6538), and halo inhibition zone tests were realized. Ag+release rates were studied by means of inductively coupled plasma mass spectrometry (ICP -MS). The obtained results suggest that silver oxide coatings do not modify significantly surface properties of the substrate, like hydrophobicity and roughness, and present antimicrobial properties for both bacteria used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sol-gel method was employed in the synthesis of di-urethane cross-linked poly(-caprolactone) (d-PCL(530)/siloxane biohybrid ormolytes incorporating copper perchlorate, (Cu(ClO4)2). The highest ionic conductivity of the d PCL(530)/siloxanenCu(ClO4)2 system is that with n = 10 (1.4 x 10-7 and 1.4 x 10-5 S cm-1, at 25 and 100 ºC, respectively). In an attempt to understand the ionic conductivity/ionic association relationship, we decide to inspect the chemical environment experienced by the Cu2+ ions in the d-PCL(530)/siloxane medium. The observed EPR spectra are typical of isolated monomeric Cu2+ ions in axially distorted sites. The molecular orbital coefficients obtained from the EPR spin Hamiltonian parameters and the optical absorption band suggests that bonding between the Cu2+ and its ligand in the ormolytes are moderately ionic. Investigation by photoluminescence spectroscopy did not evidence or allow selective excitation of transitions corresponding to complexed Cu2+ species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol–gel process. Both alkaline and acidic catalysis of the sol–gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tThis work is devoted to the investigation of zirconium oxynitride (ZrOxNy) films with varied opticalresponses prompted by the variations in their compositional and structural properties. The films wereprepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N2+ O2(17:3).The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gasflows to red-brownish for intermediate gas flows. Associated to this colour change there was a significantdecrease of brightness. With further increase of the reactive gas flow, the colour of the samples changedfrom red-brownish to dark blue or even to interference colourations. The variations in composition dis-closed the existence of four different zones, which were found to be closely related with the variationsin the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirco-nium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallizedover-stoichiometric nitride phase, which may be similar to that of Zr3N4with some probable oxygeninclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For highreactive gas flows, the films developed an oxynitride-type phase, similar to that of -Zr2ON2with someoxygen atoms occupying some of the nitrogen positions, evolving to a ZrO2monoclinic type structurewithin the zone where films were prepared with relatively high reactive gas flows. The analysis carriedout by reflected electron energy loss spectroscopy (REELS) revealed a continuous depopulation of thed-band and an opening of an energy gap between the valence band (2p) and the Fermi level close to 5 eV.The ZrN-based coatings (zone I and II) presented intrinsic colourations, with a decrease in brightness anda colour change from bright yellow to golden yellow, red brownish and dark blue. Associated to thesechanges, there was also a shift of the reflectivity minimum to lower energies, with the increase of thenon-metallic content. The samples lying in the two last zones (zone III, oxynitride and zone IV, oxide films)revealed a typical semi-transparent-optical behaviour showing interference-like colourations only dueto the complete depopulation of the d band at the Fermi level. The samples lying in these zones presentedalso an increase of the optical bandgap from 2 to 3.6 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000sodium sulfate0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solutesolvent interactions. The results obtained in the study show that solutesolvent interactions of nonionic organic compounds and proteins in polyethylene glycolsodium sulfate aqueous two-phase system change in the presence of NaCl additive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.