5 resultados para Ecosystem-level models
em Universidade do Minho
Risk acceptance in the furniture sector: Analysis of acceptance level and relevant influence factors
Resumo:
Risk acceptance has been broadly discussed in relation to hazardous risk activities and/or technologies. A better understanding of risk acceptance in occupational settings is also important; however, studies on this topic are scarce. It seems important to understand the level of risk that stakeholders consider sufficiently low, how stakeholders form their opinion about risk, and why they adopt a certain attitude toward risk. Accordingly, the aim of this study is to examine risk acceptance in regard to occupational accidents in furniture industries. The safety climate analysis was conducted through the application of the Safety Climate in Wood Industries questionnaire. Judgments about risk acceptance, trust, risk perception, benefit perception, emotions, and moral values were measured. Several models were tested to explain occupational risk acceptance. The results showed that the level of risk acceptance decreased as the risk level increased. High-risk and death scenarios were assessed as unacceptable. Risk perception, emotions, and trust had an important influence on risk acceptance. Safety climate was correlated with risk acceptance and other variables that influence risk acceptance. These results are important for the risk assessment process in terms of defining risk acceptance criteria and strategies to reduce risks.
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.
Resumo:
When representing the requirements for an intended software solution during the development process, a logical architecture is a model that provides an organized vision of how functionalities behave regardless of the technologies to be implemented. If the logical architecture represents an ambient assisted living (AAL) ecosystem, such representation is a complex task due to the existence of interrelated multidomains, which, most of the time, results in incomplete and incoherent user requirements. In this chap- ter, we present the results obtained when applying process-level modeling techniques to the derivation of the logical architecture for a real industrial AAL project. We adopt a V-Model–based approach that expresses the AAL requirements in a process-level perspec- tive, instead of the traditional product-level view. Additionally, we ensure compliance of the derived logical architecture with the National Institute of Standards and Technology (NIST) reference architecture as nonfunctional requirements to support the implementa- tion of the AAL architecture in cloud contexts.
Resumo:
Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility.
Resumo:
The aim of this paper is to predict time series of SO2 concentrations emitted by coal-fired power stations in order to estimate in advance emission episodes and analyze the influence of some meteorological variables in the prediction. An emission episode is said to occur when the series of bi-hourly means of SO2 is greater than a specific level. For coal-fired power stations it is essential to predict emission epi- sodes sufficiently in advance so appropriate preventive measures can be taken. We proposed a meth- odology to predict SO2 emission episodes based on using an additive model and an algorithm for variable selection. The methodology was applied to the estimation of SO2 emissions registered in sampling lo- cations near a coal-fired power station located in Northern Spain. The results obtained indicate a good performance of the model considering only two terms of the time series and that the inclusion of the meteorological variables in the model is not significant.