3 resultados para Durango apatite

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the vast investigation and the large amount of products already available in the market to treat the different bone defects there is still a growing need to develop more advanced and complex therapeutic strategies. In this context, a mixture of Marine Hydroxyapatite-Fluorapatite:Collagen (HA-FP:ASC) seems to be a promising solution to overcome these bone defects, specifically, dental defects. HA-FP particles (20–63 μm) were obtained through pyrolysis (950°C, 12 h) of shark teeth (Isurus oxyrinchus, P. glauca), and Type I collagen was isolated from Prionace glauca skin as previously described (1). After the steps of purification, collagen was solubilized in 0.5 M acetic acid and HA-FP added producing three different formulations: were produced, 30:70, 50:50 and 70:30 of HA-FP:ASC, respectively. EDC/NHS and HMDI binding agents were used to stabilize the produced scaffolds. Mechanical properties were evaluated by compression tests. SEM analysis allowed observing the mineral deposition, after immersion in simulated body fluid and also permitted to evaluate how homogenous was the distribution of HA-FP in the different scaffold formulations, also confirmed by μ-CT assay. It was readily visible by Cytotoxicity and life/dead CLSM assays that cells were able to adhere and proliferate in the produced scaffolds. Scaffolds crosslinked with EDC/NHS showed lower cytotoxicity, being the ones chosen for further cellular evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive.  We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3   1.  L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2.  A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3.  Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan and hyaluronic acid modified with catechol groups, which are the main responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The build-up of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution for 7 days is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that the constructed films promote the formation of bone-like apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.