7 resultados para Diversity in the workplace

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction of technologies in the workplace have led to a dramatic change. These changes have come with an increased capacity to gather data about one’s working performance (i.e. productivity), as well as the capacity to track one’s personal responses (i.e. emotional, physiological, etc.) to this changing workplace environment. This movement of self-monitoring or self-sensing using diverse types of wearable sensors combined with the use of computing has been identified as the Quantified-Self. Miniaturization of sensors, reduction in cost and a non-stop increase in the computer power capacity has led to a panacea of wearables and sensors to track and analyze all types of information. Utilized in the personal sphere to track information, a looming question remains, should employers use the information from the Quantified-Self to track their employees’ performance or well-being in the workplace and will this benefit employees? The aim of the present work is to layout the implications and challenges associated with the use of Quantified-Self information in the workplace. The Quantified-Self movement has enabled people to understand their personal life better by tracking multiple information and signals; such an approach could allow companies to gather knowledge on what drives productivity for their business and/or well-being of their employees. A discussion about the implications of this approach will cover 1) Monitoring health and well-being, 2) Oversight and safety, and 3) Mentoring and training. Challenges will address the question of 1) Privacy and Acceptability, 2) Scalability and 3) Creativity. Even though many questions remain regarding their use in the workplace, wearable technologies and Quantified-Self data in the workplace represent an exciting opportunity for the industry and health and safety practitioners who will be using them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Work-related musculoskeletal disorders (WMSD) became one of the biggest health problems in the workplace and one of the main concerns of ergonomics and despite all the technical improvements manual handling is still an important risk factor for WMSD. The current study was performed with the main objective of conducting an ergonomic analysis in a workplace that consists in packaging products in a pallet, in a food distribution industry, also called picking. In this perspective, the aim of the study is to identify if the tasks performed by operators present any risk of WMSD and, if so, to suggest proposals for minimizing the associated effort. The methodologies of ergonomic risk assessment that were initially applied were the Risk Reckoner and the Manual Handling Assessment Chart (MAC). Subsequently, in order to, on the one hand, complement the analysis performed using the two methods previously mentioned, and, on the other hand, allow an assessment of two important risk factors associated with this activity (work postures and loads handling), two additional methodologies were also selected: the Revised NIOSH Lifting Equation and the Rapid Entire Body Assessment (REBA). In all the performed approaches, the tasks of palletizing at lower levels were identified as the ones that most penalize workers in what regards the risk of development of WMSD. All methodologies identified levels of risk that require an immediate or short-term ergonomic intervention, aiming at ensuring the safety and health of workers performing such activity. The implementation of measures designed to eliminate or minimize the risk may involve the allocation of significant human and material resources that is increasingly necessary to manage efficiently. Taking into account the complexity and variability of the developed tasks, it is recommended that such a decision can be preceded by a new study using more accurate risk assessment methodologies, such as those that use monitoring tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive cervical cancer (ICC) is the third most frequent cancer among women worldwide and is associated with persistent infection by carcinogenic human papillomaviruses (HPVs). The combination of large populations of viral progeny and decades of sustained infection may allow for the generation of intra-patient diversity, in spite of the assumedly low mutation rates of PVs. While the natural history of chronic HPVs infections has been comprehensively described, within-host viral diversity remains largely unexplored. In this study we have applied next generation sequencing to the analysis of intra-host genetic diversity in ten ICC and one condyloma cases associated to single HPV16 infection. We retrieved from all cases near full-length genomic sequences. All samples analyzed contained polymorphic sites, ranging from 3 to 125 polymorphic positions per genome, and the median probability of a viral genome picked at random to be identical to the consensus sequence in the lesion was only 40%. We have also identified two independent putative duplication events in two samples, spanning the L2 and the L1 gene, respectively. Finally, we have identified with good support a chimera of human and viral DNA. We propose that viral diversity generated during HPVs chronic infection may be fueled by innate and adaptive immune pressures. Further research will be needed to understand the dynamics of viral DNA variability, differentially in benign and malignant lesions, as well as in tissues with differential intensity of immune surveillance. Finally, the impact of intralesion viral diversity on the long-term oncogenic potential may deserve closer attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares [sim]54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate 'switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilms in food processing plants represent not only a problem to human health but also cause economic losses by technical failure in several systems. In fact, many foodborne outbreaks have been found to be associated with biofilms. Biofilms may be prevented by regular cleaning and disinfection, but this does not completely prevent biofilm formation. Besides, due to their diversity and to the development of specialized phenotypes, it is well known that biofilms are more resistant to cleaning and disinfection than planktonic microorganisms. In recent years, a considerable effort has been made in the prevention of microbial adhesion and biofilm formation on food processing surfaces and novel technologies have been introduced. In this context, this chapter discusses the main conventional and emergent strategies that have been employed to prevent bacterial adhesion to food processing surfaces and thus to efficiently maintain good hygiene throughout the food industries.