18 resultados para Distribution system optimization
em Universidade do Minho
Resumo:
Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.
Resumo:
In highway construction, earthworks refer to the tasks of excavation, transportation, spreading and compaction of geomaterial (e.g. soil, rockfill and soil-rockfill mixture). Whereas relying heavily on machinery and repetitive processes, these tasks are highly susceptible to optimization. In this context Artificial Intelligent techniques, such as Data Mining and modern optimization can be applied for earthworks. A survey of these applications shows that they focus on the optimization of specific objectives and/or construction phases being possible to identify the capabilities and limitations of the analyzed techniques. Thus, according to the pinpointed drawbacks of these techniques, this paper describes a novel intelligent earthwork optimization system, capable of integrating DM, modern optimization and GIS technologies in order to optimize the earthwork processes throughout all phases of design and construction work. This integration system allows significant savings in time, cost and gas emissions contributing for a more sustainable construction.
Resumo:
In previous work we have presented a model capable of generating human-like movements for a dual arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the implementation of the IPOPT solver embedded in our MATLAB simulator.
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Autor proof
Resumo:
Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.
Resumo:
"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"
Resumo:
Today recovering urban waste requires effective management services, which usually imply sophisticated monitoring and analysis mechanisms. This is essential for the smooth running of the entire recycling process as well as for planning and control urban waste recovering. In this paper we present a business intelligence system especially designed and im- plemented to support regular decision-making tasks on urban waste management processes. The system provides a set of domain-oriented analytical tools for studying and characterizing poten- tial scenarios of collection processes of urban waste, as well as for supporting waste manage- ment in urban areas, allowing for the organization and optimization of collection services. In or- der to clarify the way the system was developed and the how it operates, particularly in process visualization and data analysis, we also present the organization model of the system, the ser- vices it disposes, and the interface platforms for exploring data.
Resumo:
In this work, the optimization of an extrusion die designed for the production of a wood–plastic composite (WPC) decking profile is investigated. The optimization was performed with the help of numerical tools, more precisely, by solving the continuity and momentum conservation equations that govern such flow, and aiming to balance properly the flow distribution at the extrusion die flow channel outlet. To capture the rheological behavior of the material, we used a Bird-Carreau model with parameters obtained from a fit to the (shear viscosity versus shearrate) experimental data, collected from rheological tests. To yield a balanced output flow, several numerical runs were performed by adjusting the flow restriction at different regions of the flow-channel parallel zone crosssection. The simulations were compared with the experimental results and an excellent qualitative agreement was obtained, allowing, in this way, to attain a good balancing of the output flow and emphasizing the advantages of using numerical tools to aid the design of profile extrusion dies.
Resumo:
The Electromagnetism-like (EM) algorithm is a population- based stochastic global optimization algorithm that uses an attraction- repulsion mechanism to move sample points towards the optimal. In this paper, an implementation of the EM algorithm in the Matlab en- vironment as a useful function for practitioners and for those who want to experiment a new global optimization solver is proposed. A set of benchmark problems are solved in order to evaluate the performance of the implemented method when compared with other stochastic methods available in the Matlab environment. The results con rm that our imple- mentation is a competitive alternative both in term of numerical results and performance. Finally, a case study based on a parameter estimation problem of a biology system shows that the EM implementation could be applied with promising results in the control optimization area.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Tese de Doutoramento em Engenharia de Materiais.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Objective: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. Methods: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). Results: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1 , FVC, FEV1 /FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. Conclusions: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients.
Resumo:
Tese de Doutoramento (Programa doutoral em Engenharia de Materiais)