4 resultados para Distributed sensing
em Universidade do Minho
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
The use of polymer based magnetoelectric materials for sensing and actuation applications has been the subject of increasing scientific and technological interest. One of the drawbacks to be overcome in this field is to increase the temperature range of application above 100 ºC. In this way, a nanocomposite material composed by a mixture of two aromatic diamines, 1,3-Bis-2-cyano-3-(3 aminophenoxy)phenoxybenzene (diamine 2CN) and 1,3-Bis(3-aminophenoxy)benzene (diamine 0CN) and CoFe2O4 (CFO) nanoparticles was designed, fabricated and successfully tested for high temperature magnetoelectric applications. Results revealed that CFO nanoparticles are well distributed within the 0CN2CN polymer matrix and that the addition of CFO nanoparticles does not significantly alter the polyimides structure. The magnetization response of the composite is determined by the CFO nanoparticle content. The piezoelectric response of the 0CN2CN polymer matrix (≈11 pC.N-1) and the maximum α33 value (0.8mV.cm-1.Oe-1) are stable over time and decrease only when the composite is subjected to temperatures above 130 ºC. Strategies to further improve the ME response are also discussed.
Resumo:
Ti-Me binary intermetallic thin films based on a titanium matrix doped with increasing amounts of Me (Me = Al, Cu) were prepared by magnetron sputtering (under similar conditions), aiming their application in biomedical sensing devices. The differences observed on the composition and on the micro(structural) features of the films, attributed to changes in the discharge characteristics, were correlated with the electrical properties of the intermetallic systems (Ti-Al and Ti-Cu). For the same Me exposed areas placed on the Ti target (ranging from 0.25 cm2 to 20 cm2) the Cu content increased from 3.5 at.% to 71.7 at.% in the Ti-Cu system and the Al content, in Ti-Al films, ranged from 11 to 45 at.%. The structural characterization evidenced the formation of metastable Ti-Me intermetallic phases for Al/Ti atomic ratios above 0.20 and for Cu/Ti ratios above 0.25. For lower Me concentrations, the effect of the α-Ti(Me) structure domains the overall structure. With the increase amount of the Me into Ti structure a clear trend for amorphization was observed. For both systems it was observed a significant decrease of the electrical resistivity with increasing Me/Ti atomic ratios (higher than 0.5 for Al/Ti atomic ratio and higher than 1.3 for Cu/Ti atomic ratio). Although similar trends were observed in the resistivity evolution for both systems, the Ti-Cu films presented lower resistivity values in comparison to Ti-Al system.
Resumo:
Distributed data aggregation is an important task, allowing the de- centralized determination of meaningful global properties, that can then be used to direct the execution of other applications. The resulting val- ues result from the distributed computation of functions like count, sum and average. Some application examples can found to determine the network size, total storage capacity, average load, majorities and many others. In the last decade, many di erent approaches have been pro- posed, with di erent trade-o s in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of ag- gregation algorithms, it can be di cult and time consuming to determine which techniques will be more appropriate to use in speci c settings, jus- tifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally de nes the concept of aggrega- tion, characterizing the di erent types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.