34 resultados para Digital Environments
em Universidade do Minho
Resumo:
In the context of the scientific research into radio, recent years have encouraged many theories about the meaning of a post-radio (Oliveira & Portela, 2011), thus enlisting several parameters regarding the inclusion of contemporary radio in the digital and online environments. This digital migration has led to the development of mobile applications for radio, broadening the communicative potential of audiences (Aguado, Feijoo & Martínez, 2013), as well as promoting convergence of interactive content among listeners-users. Aware of this opportunity, the main broadcasters in Spain and Portugal have broadened their radiophonic scope to the mobile platform, especially geared towards smartphones through the development of mobile applications, commonly known as apps (Cerezo, 2010). As a symbol of a culture in permanent changing, smartphones not only provide greater easiness in terms of access and interaction, but also afford larger opportunities for disseminating content among audiences, a phenomenon that some studies have labelled as user distributed content (Villi, 2012). This article presents an exploratory analysis of the current policies of the main Spanish and Portuguese radio broadcasters regarding mobile applications, evaluating the different levels of interaction and participation in these platforms. This observation led to the conclusion, among other findings, that the mobile platform represents a supplementary channel for traditional FM radio, rather than a new medium with its own language and expression.
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
BACKGROUND: Lean Production Systems (LPS) have become very popular among manufacturing industries, services and large commercial areas. A LPS must develop and consider a set of work features to bring compatibility with workplace ergonomics, namely at a muscular, cognitive and emotional demands level. OBJECTIVE: Identify the most relevant impacts of the adoption of LPS from the ergonomics point of view and summarizes some possible drawbacks for workplace ergonomics due to a flawed application of the LPS. The impacts identified are focused in four dimensions: work pace, intensity and load; worker motivation, satisfaction and stress; autonomy and participation; and health outcome. This paper also discusses the influence that the work organization model has on workplace ergonomics and on the waste elimination previewed by LPS. METHODS: Literature review focused LPS and its impact on occupational ergonomics conditions, as well as on the Health and Safety of workers. The main focus of this research is on LPS implementations in industrial environments and mainly in manufacturing industry workplaces. This is followed by a discussion including the authors’ experience (and previous research). RESULTS: From the reviewed literature it seems that there is no consensus on how Lean principles affect the workplace ergonomics since most authors found positive (advantages) and negative (disadvantages) impacts. CONCLUSIONS: The negative impacts or disadvantages of LPS implementations reviewed may result from the misunderstanding of the Lean principles. Possibly, they also happen due to partial Lean implementations (when only one or two tools were implemented) that may be effective in a specific work context but not suitable to all possible situations as the principles of LPS should not lead, by definition, to any of the reported drawbacks in terms of workplace ergonomics.
Resumo:
Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.
Resumo:
Human activity is very dynamic and subtle, and most physical environments are also highly dynamic and support a vast range of social practices that do not map directly into any immediate ubiquitous computing functionally. Identifying what is valuable to people is very hard and obviously leads to great uncertainty regarding the type of support needed and the type of resources needed to create such support. We have addressed the issues of system development through the adoption of a Crowdsourced software development model [13]. We have designed and developed Anywhere places, an open and flexible system support infrastructure for Ubiquitous Computing that is based on a balanced combination between global services and applications and situated devices. Evaluation, however, is still an open problem. The characteristics of ubiquitous computing environments make their evaluation very complex: there are no globally accepted metrics and it is very difficult to evaluate large-scale and long-term environments in real contexts. In this paper, we describe a first proposal of an hybrid 3D simulated prototype of Anywhere places that combines simulated and real components to generate a mixed reality which can be used to assess the envisaged ubiquitous computing environments [17].
Resumo:
Forming suitable learning groups is one of the factors that determine the efficiency of collaborative learning activities. However, only a few studies were carried out to address this problem in the mobile learning environments. In this paper, we propose a new approach for an automatic, customized, and dynamic group formation in Mobile Computer Supported Collaborative Learning (MCSCL) contexts. The proposed solution is based on the combination of three types of grouping criteria: learner’s personal characteristics, learner’s behaviours, and context information. The instructors can freely select the type, the number, and the weight of grouping criteria, together with other settings such as the number, the size, and the type of learning groups (homogeneous or heterogeneous). Apart from a grouping mechanism, the proposed approach represents a flexible tool to control each learner, and to manage the learning processes from the beginning to the end of collaborative learning activities. In order to evaluate the quality of the implemented group formation algorithm, we compare its Average Intra-cluster Distance (AID) with the one of a random group formation method. The results show a higher effectiveness of the proposed algorithm in forming homogenous and heterogeneous groups compared to the random method.
Resumo:
Archeology and related areas have a special interest on cultural heritage sites since they provide valuable information about past civilizations. However, the ancient buildings present in these sites are commonly found in an advanced state of degradation which difficult the professional/expert analysis. Virtual reconstructions of such buildings aim to provide a digital insight of how these historical places could have been in ancient times. Moreover, the visualization of such models has been explored by some Augmented Reality (AR) systems capable of providing support to experts. Their compelling and appealing environments have also been applied to promote the social and cultural participation of general public. The existing AR solutions regarding this thematic rarely explore the potential of realism, due to the following lacks: the exploration of mixed environments is usually only supported for indoors or outdoors, not both in the same system; the adaptation of the illumination conditions to the reconstructed structures is rarely addressed causing a decrease of credibility. MixAR [1] is a system concerned with those challenges, aiming to provide the visualization of virtual buildings augmented upon real ruins, allowing soft transitions among its interiors and exteriors and using relighting techniques for a faithful interior illumination, while the user freely moves in a given cultural heritage site, carrying a mobile unit. Regarding the focus of this paper, we intend to report the current state of MixAR mobile unit prototype, which allows visualizing virtual buildings – properly aligned with real-world structures – based on user's location, during outdoor navigation. In order to evaluate the prototype performance, a set of tests were made using virtual models with different complexities.
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto.
Resumo:
Immersive environments (IE) are being increasingly used in order to perform psychophysical experiments. The versatility in terms of stimuli presentation and control and the less time-consuming procedures are their greatest strengths. However, to ensure that IE results can be generalized to real world scenarios we must first provide evidence that performance in IE is quantitatively indistinguishable from performance in real-world. Our goal was to perceptually validate distance perception for CAVE-like IEs. Participants performed a Frontal Matching Distance Task (Durgin & Li, 2011) in three different conditions: real-world scenario (RWS); photorealistic IE (IEPH) and non-photorealistic IE (IENPH). Underestimation of distance was found across all the conditions, with a significant difference between the three conditions (Wilks’ Lambda = .38, F(2,134)= 110.8, p<.01, significant pairwise differences with p<.01). We found a mean error of 2.3 meters for the RWS, 5 meters for the IEPH, and of 6 meters for the IENPH in a pooled data set of 5 participants. Results indicate that while having a photorealistic IE with perspective and stereoscopic depth cues might not be enough to elicit a real-world performance in distance judgment tasks, nevertheless this type of environment minimizes the discrepancy between simulation and real-world when compared with non-photorealistic IEs.
Resumo:
Students have different ways for learning and processing information. Some students prefer learning through seeing while others prefer learning through listening; some students prefer doing activities while other prefer reflecting.Some students reason logically, while others reason intuitively, etc. Identifying the learning style of each student, and providing learning content based on these styles represents a good method to enhance the learning quality. However, there are no efforts onhow to detect the students’ learning styles in mobile computer supported collaborative learning (MCSCL) environments. We present in this paper new ways for automatically detecting the learning styles of students in MCSCL environments based on the learning style model of Felder-Silverman. The identified learning styles of students could be then stored and used at anytime toassign each one of them to his/her appropriate learning group.
Resumo:
Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.
Resumo:
In an underwater environment it is difficult to implement solutions for wireless communications. The existing technologies using electromagnetic waves or lasers are not very efficient due to the large attenuation in the aquatic environment. Ultrasound reveals a lower attenuation, and thus has been used in underwater long-distance communications. The much slower speed of acoustic propagation in water (about 1500 m/s) compared with that of electromagnetic and optical waves, is another limiting factor for efficient communication and networking. For high data-rates and real-time applications it is necessary to use frequencies in the MHz range, allowing communication distances of hundreds of meters with a delay of milliseconds. To achieve this goal, it is necessary to develop ultrasound transducers able to work at high frequencies and wideband, with suitable responses to digital modulations. This work shows how the acoustic impedance influences the performance of an ultrasonic emitter transducer when digital modulations are used and operating at frequencies between 100 kHz and 1 MHz. The study includes a Finite Element Method (FEM) and a MATLAB/Simulink simulation with an experimental validation to evaluate two types of piezoelectric materials: one based on ceramics (high acoustic impedance) with a resonance design and the other based in polymer (low acoustic impedance) designed to optimize the performance when digital modulations are used. The transducers performance for Binary Amplitude Shift Keying (BASK), On-Off Keying (OOK), Binary Phase Shift Keying (BPSK) and Binary Frequency Shift Keying (BFSK) modulations with a 1 MHz carrier at 125 kbps baud rate are compared.
Resumo:
The study reported here aims at contributing to a deeper understanding of the educational possibilities offered by digital manipulatives in preschool contexts. It presents a study carried with a digital manipulative to enhance the development of lexical knowledge and language awareness, which are relevant language abilities for formal literacy learning. The study took place in a Portuguese preschool, with a class of 20 five-year-olds in collaboration with the teacher. The digital manipulative supported the construction of multiple fictional worlds, motivating children's verbal interactions, and the playing of words and sound games, thus contextualizing the learning of an extensive collection of vocabulary and language awareness abilities. The degree of engagement and involvement that the manipulative provided in supporting children’s imaginative play as well as the imitation, in their own play, of the playful pedagogical interventions that the teacher had designed, shows the importance of well- designed materials that support a child-centered learning model. As such, it sustains a discussion on the potential of digital manipulatives to enhance fundamental language development in the preschool years. Further, the study highlights the importance of multidisciplinary teams in the creation of innovative pedagogical materials.
Resumo:
No quadro da investigação científica sobre rádio, os últimos anos têm dado a conhecer inúmeras abordagens sobre o significado de uma post-radio (Oliveira & Portela, 2011), isto é, a definição de um conjunto de questões que se colocam à inclusão da rádio contemporânea em ambientes digitais e online. Esta migração digital tem vindo a proporcionar o desenvolvimento das aplicações móveis das rádios, como o alargamento das potencialidades comunicativas (Aguado, Feijoo & Martínez, 2013), de audiências, de convergência de conteúdos interativos entre ouvintes-utilizadores. Conscientes desta oportunidade, as principais emissoras da Espanha e Portugal alargaram o universo da radiofonia à plataforma móvel, com especial atenção aos telefones inteligentes, através do desenvolvimento de aplicações móveis (apps) (Cerezo, 2010). Os smartphones, como símbolo de uma cultura em permanente mutação, sugerem não apenas uma maior facilidade no acesso e interação, mas acrescentam grandes possibilidades para a difusão de conteúdos entre audiências, o que estudos têm designado por user distributed content (Villi, 2012). O presente artigo apresenta uma análise exploratória sobre as políticas atuais das principais rádios espanholas e portuguesas nas aplicações móveis, avaliando o grau de interação e participação mobilizado nessas plataformas. Durante a observação, conclui-se, entre outros dados, que a plataforma móvel representa um canal suplementar para a rádio tradicional FM, mais que um novo meio com linguagem e expressividade próprios.
Resumo:
(Excerto) Com a expansão das novas tecnologias digitais da informação e da comunicação e as biotecnologias, o mundo social e técnico está a transformar-se de uma forma acelerada nas últimas décadas. Uma alteração que tem dois efeitos importantes: em primeiro lugar, uma mudança na relação entre o humano e a tecnologia; em segundo, uma crise da forma tradicional das ciências sociais pensarem a questão da técnica.