9 resultados para Dielectric Polarization
em Universidade do Minho
Resumo:
Mesenchymal stem cells (MSCs) are considered to be â â immunologically privileged.â â In a previous work when human adipose tissue-derived stem cells (hASCs) subcutaneously implanted in mice we did not identify an adverse host response1. Recently, it was shown that tissue regeneration could benefit from the polarization of M2 macrophages subpopulations 2. In this study we hypothesised that undifferentiated hASCs and derived osteoblasts and chondrocytes are able to switch murine bone marrow-derived macrophages (mBMMÃ s) into M2 phenotype, aiding tissue regeneration. Murine BMMÃ s were plated in direct contact with undifferentiated and osteo or chondro-differentiated hASCs for 4 h, 10 h, 24 h and 72 h. The cytokine profile was analysed by qRT-PCR and the surface markers were detected by flow cytometry. The direct interaction of both cell types was observed by time lapse microscopy. The results showed that mBMMÃ s polarized after contacting tissue culture polystyrene. This M2 phenotype was maintained along the experiment in direct contact with both undifferentiated and osteo or chondro-differentiated hASCs. This was confirmed by the expression of IL-1, IL-10, IL-4, TNF-a and IFN-g (genetic profile) and surface markers (CD206 + + , CD336 + + , MHC II + and CD86 + + ) detection. These data suggest the potential of hASCs in contemporary xenogenic tissue engineering and regenerative medicine strategies, as well as host immune system modulation in autoimmune diseases.
Resumo:
The transverse polarization of Λ and Λ¯ hyperons produced in proton--proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 μb−1 of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman xF from 5×10−5 to 0.01 and transverse momentum pT from 0.8 to 15 GeV is −0.010±0.005(stat)±0.004(syst) for Λ and 0.002±0.006(stat)±0.004(syst) for Λ¯. It is also measured as a function of xF and pT, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the xF range covered by this mesurement.
Resumo:
The ferroelectric phase transitions in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT 50/50) ceramics,fabricatedbyasolidstatereaction,werestudiedbyusing X-Ray diffraction, Raman spectroscopy, and measuring electric polarization, dielectric permittivity and pyroelectric current. Xraydiffraction(XRD)confirmsthecoexistenceoftetragonal(T) andrhombohedral(R)phasesatroomtemperature.Thetemperature dependence of the Raman modes frequency reveals the existenceoftwophasetransitionscorrespondingtotherhombohedral – tetragonal, and tetragonal - cubic close to 30 and 100 °C, respectively. The temperature dependence of electric polarization,pyroelectriccurrent,anddielectricpermittivityfurther supports theferroelectric (tetragonal) toparaelectric (cubic) phasetransition.Moreover,thedielectricpermittivityrevealsthe diffuseness of the phase transition and is attributed to the compositional fluctuations of different polar micro-regions.
Resumo:
In this work the dielectric properties and ferromagnetic resonance of Polyvinylidene- uoride embedded with 10 wt. % of NiFe2O4 or Ni0.5Zn0.5Fe2O4 nanoparticles are presented. The mechanisms of the dielectric relaxation in these two composites do not differ from each other. For more precise characterization of the dielectric relaxation, a two dimensional distribution of relaxation times was calculated from the temperature dependencies of the complex dielectric permittivity. The results obtained from the 2D distribution and the mean relaxation time are found to be consistent. The dynamics of the dielectric permittivity is described by the Arrhenius law. The energy and attempt time of the dielectric relaxators lie in a narrow energy and time region thus proving that the single type chains of polymer are responsible for a dispersion. The magnetic properties of the composites were investigated using the fer- romagnetic resonance. A single resonance line was observed for both samples. From the temperature dependence (100 K - 310 K) of the resonance eld and linewidth, the origin of the observed line was attributed to the NiFe2O4 and Ni0.5Zn0.5Fe2O4 superparamagnetic nanoparticles. By measuring lms at dif- ferent orientations with respect to the external magnetic eld, the angular dependence of the resonance was observed, indicating the magnetic dipolar in-plane interactions.
Resumo:
Polyimide co-polymers have been prepared based on different diamines as co-monomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed and the dielectric complex function, ac conductivity and electric modulus of the co-polymers were investigated as a function of CN group content in the frequency range from 0.1 Hz to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150ºC, the dielectric constant increases with increasing temperature due to increaseing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN groups content present in the samples.
Resumo:
Different metal-ion exchanged NaY zeolite, Na(M)Y, were used to prepare poly(vinylidene fluoride) based composites by solvent casting and melting crystallization. The effect of different metal ion-exchanged zeolites on polymer crystallization and electrical properties was reported. Cation-framework interactions and hydration energy of the cations determined that K+ is the most efficient exchanged ion in NaY zeolite, followed by Cs+ and Li+. The electroactive phase crystallization strongly depends on the ions present in the zeolite, leading to variations of the surface energy characteristics of the Na(M)Y zeolites and the polymer chain ability of penetration in the zeolite. Thus, Na(Li)Y and NaY induces the complete electroactive -phase crystallization of the crystalline phase of PVDF, while Na(K)Y only induces it partly and Na(Cs)Y is not able to promote the crystallization of the electroactive phase. Furthermore, different ion size/weigh and different interaction with the zeolite framework results in significant variations in the electrical response of the composite. In this way, iinterfacial polarization effects in the zeolite cavities and zeolite-polymer interface, leads to strong increases of the dielectric constant on the composites with lightest ions weakly bound to the zeolite framework. Polymer composite with Na(Li)Y show the highest dielectric response, followed by NaY and Na(K)Y. Zeolite Na(Cs)Y contribute to a decrease of the dielectric constant of the composite. The results show the relevance of the materials for sensor development.
Resumo:
Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).
Resumo:
tThe main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOzthin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposi-tion: the flow of the reactive gases mixture (N2and O2, with a constant concentration ratio of 17:3); thesubstrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel).The obtained films exhibit significant differences. The variation of the deposition parameters inducesvariations of the composition, microstructure and morphology. These differences cause variation of theelectrical resistivity essentially correlated with the composition and structural changes. The gradualdecrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity.The dielectric characteristics of some of the high resistance TaxNyOzfilms were obtained in the sampleswith a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectricTaxNyOzfilms). Some of these films exhibited dielectric constant values higher than those reported forother tantalum based dielectric films.
Resumo:
In this work it was studied the possible use of thin films, composed of Au nanoparticles (NPs) embedded in a TiO2 matrix, in biological applications, by evaluating their interaction with a well-known protein, Bovine Serum Albumin (BSA), as well as with microbial cells (Candida albicans). The films were produced by one-step reactive DC magnetron sputtering followed by heat-treatment. The samples revealed a composition of 8.3 at.% of Au and a stoichiometric TiO2 matrix. The annealing promoted grain size increase of the Au NPs from 3 nm (at 300 °C) to 7 nm (at 500 °C) and a progressive crystallization of the TiO2 matrix to anatase. A broad localized surface plasmon resonance (LSPR) absorption band (λ = 580–720 nm) was clearly observed in the sample annealed at 500 °C, being less intense at 300 °C. The biological tests indicated that the BSA adhesion is dependent on surface nanostructure morphology, which in turn depends on the annealing temperature that changed the roughness and wettability of the films. The Au:TiO2 thin films also induced a significant change of the microbial cell membrane integrity, and ultimately the cell viability, which in turn affected the adhesion on its surface. The microstructural changes (structure, grain size and surface morphology) of the Au:TiO2 films promoted by heat-treatment shaped the amount of BSA adhered and affected cell viability.