4 resultados para Deployment of HydroMet Sensor Networks

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless body sensor networks (WBSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WBSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. However, one important and difficult aspect of WBSNs is to provide data transmissions with quality of service, among other factors due to the antennas being small size and placed close to the body. Such transmissions cannot be fully provided without the assumption of a MAC protocol that solves the problems of the medium sharing. A vast number of MAC protocols conceived for wireless networks are based on random or scheduled schemes. This paper studies firstly the suitability of two MAC protocols, one using CSMA and the other TDMA, to transmit directly to the base station the signals collected continuously from multiple sensor nodes placed on the human body. Tests in a real scenario show that the beaconed TDMA MAC protocol presents an average packet loss ratio lower than CSMA. However, the average packet loss ratio is above 1.0 %. To improve this performance, which is of vital importance in areas such as e-health and ambient assisted living, a hybrid TDMA/CSMA scheme is proposed and tested in a real scenario with two WBSNs and four sensor nodes per WBSN. An average packet loss ratio lower than 0.2 % was obtained with the hybrid scheme. To achieve this significant improvement, the hybrid scheme uses a lightweight algorithm to control dynamically the start of the superframes. Scalability and traffic rate variation tests show that this strategy allows approximately ten WBSNs operating simultaneously without significant performance degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer-to-Peer (P2P) is nowadays a widely used paradigm underpinning the deployment of several Internet services and applications. However, the management of P2P traffic aggregates is not an easy task for Internet Service Providers (ISPs). In this perspective, and considering an expectable proliferation in the use of such ap- plications, future networks require the development of smart mechanisms fostering an easier coexistence between P2P applications and ISP infrastructures. This paper aims to contribute for such research efforts presenting a framework incorporating useful mechanisms to be activated by network administrators, being also able to operate as an automated management tool dealing with P2P traffic aggregates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (Rc) and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.