6 resultados para Demand responsive transportation.

em Universidade do Minho


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to communication and technology developments, residential consumers are enabled to participate in Demand Response Programs (DRPs), control their consumption and decrease their cost by using Household Energy Management (HEM) systems. On the other hand, capability of energy storage systems to improve the energy efficiency causes that employing Phase Change Materials (PCM) as thermal storage systems to be widely addressed in the building applications. In this paper, an operational model of HEM system considering the incorporation of more than one type of PCM in plastering mortars (hybrid PCM) is proposed not only to minimize the customerâ s cost in different DRPs but also to guaranty the habitantsâ  satisfaction. Moreover, the proposed model ensures the technical and economic limits of batteries and electrical appliances. Different case studies indicate that implementation of hybrid PCM in the buildings can meaningfully affect the operational pattern of HEM systems in different DRPs. The results reveal that the customerâ s electricity cost can be reduced up to 48% by utilizing the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of stem cells is a promising therapeutic approach for the substantial challenge to regenerate cartilage. Considering the two prerequisites, namely the use of a 3D system to enable the chondrogenic differentiation and growth factors to avoid dedifferentiation, the diffusion efficiency of essential biomolecules is an intrinsic issue. We already proposed a liquified bioencapsulation system containing solid microparticles as cell adhesion sites1. Here, we intend to use the optimized system towards chondrogenic differentiation by encapsulating stem cells and collagenII-TGF-β3 PLLA microparticles. As a proof-of-concept, magnetite-nanoparticles were incorporated into the multilayered membrane. This can be a great advantage after implantation procedures to fixate the capsules in situ with the held of an external magnetic patch and for the follow-up through imaging. Results showed that the production of glycosaminoglycans and the expression of cartilage-relevant markers (collagen II, Sox9, aggrecan, and COMP) increased up to 28 days, while hypertrophic (collagen X) and fibrotic (collagen I) markers were downregulated. The presence of nanofibers in the newly deposited ECM was visualized by SEM, which resembles the collagen fibrils of native cartilage. The presence of the major constituent of cartilage, collagen II, was detected by immunocytochemistry and afranin-O and alcian blue stainings revealed a basophilic ECM deposition, which is characteristic of neocartilage. These findings suggest that the proposed system may provide a suitable environment for chondrogenic differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-dispersed loads of finely powdered metals, metal oxides, several carbon allotropes or nanoclays are incorporated into highly porous polyamide 6 microcapsules in controllable amounts via an original one-step in situ fabrication technique. It is based on activated anionic polymerization (AAP) of ε-caprolactam in a hydrocarbon solvent performed in the presence of the respective micro- or nanosized loads. The forming microcapsules with typical diameters of 25-50 µm entrap up to 40 wt% of load. Their melt processing produces hybrid thermoplastic composites. Mechanical, electric conductivity and magnetic response measurements show that transforming of in situ loaded microcapsules into composites by melt processing (MP) is a facile and rapid method to fabricate materials with high mechanical resistance and electro-magnetic characteristics sufficient for many industrial applications. This novel concept requires low polymerization temperatures, no functionalization or compatibilization of the loads and it is easy to scale up at industrial production levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper highlights how transportation geotechnics can interact with transportation infrastructures and how through the planning, design, construction and maintenance can contribute to ensure solutions more safe, reliable and resilient in the future. In this context sustainable concepts are discussed and applied as best practices to preserve natural resources and assuring socio-economic and environment benefits for the society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilayer systems obtained using the Layer-by-Layer (LbL) technology have been proposed for a variety of biomedical applications in tissue engineering and regenerative medicine. LbL assembly is a simple and highly versatile method to modify surfaces and fabricate robust and highly-ordered nanostructured coatings over almost any type of substrates and with a wide range of substances. The incorporation of polyoxometalate (POM) inorganic salts as constituents of the layers presents a possibility of promoting light-stimuli responses in LbL substrates. We propose the design of a biocompatible photo-responsive multilayer system based on a Preyssler-type POM ([NaP5W30O110]14â ) and a natural origin polymer, chitosan, using the LbL methodology. The photo-reduction properties of the POM allow the spatially controlled disruption of the assembled layers due to the weakening of the electrostatic interactions between the layers. This system has found applicability in detaching devices, such as the cell sheet technology, which may solve the drawbacks actually found in other cell treatment proposals.