8 resultados para Data monitoring committees
em Universidade do Minho
Resumo:
This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Programa Doutoral em Matemática e Aplicações.
Resumo:
The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO2 levels, by using geostatisti- cal approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This method- ology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.
Resumo:
High levels of marine salt deposition present in coastal areas have a relevant effect on road runoff characteristics. This study assesses this effect with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included 30 rainfall events, in different weather, traffic, and salt deposition conditions. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological, and traffic parameters were continuously measured. The salt deposition rates were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The relation between road runoff pollutants and independent variables associated with weather, traffic, and salt deposition conditions was assessed. Significant correlations among pollutants were observed. A high salinity concentration and its influence on the road runoff were confirmed. Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed.
Resumo:
First published online: December 16, 2014.
Resumo:
Dissertação de mestrado em Estatística
Resumo:
Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95%.