7 resultados para Damage identification in structures

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed aquatic hyphomycete diversity in autumn and spring on oak leaves decomposing in five streams along a gradient of eutrophication in the Northwest of Portugal. Diversity was assessed through microscopy-based (identification by spore morphology) and DNA-based techniques (Denaturing Gradient Gel Electrophoresis and 454 pyrosequencing). Pyrosequencing revealed five times greater diversity than DGGE. About 21% of all aquatic hyphomycete species were exclusively detected by pyrosequencing and 26% exclusively by spore identification. In some streams, more than half of the recorded species would have remained undetected if we had relied only on spore identification. Nevertheless, in spring aquatic hyphomycete diversity was higher based on spore identification, probably because many species occurring in this season are not yet connected to ITS barcodes in genetic databases. Pyrosequencing was a powerful tool for revealing aquatic hyphomycete diversity on decomposing plant litter in streams and we strongly encourage researchers to continue the effort in barcoding fungal species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.