6 resultados para DIRECT METHANOL FUEL CELLS
em Universidade do Minho
Resumo:
Mesenchymal stem cells (MSCs) are considered to be â â immunologically privileged.â â In a previous work when human adipose tissue-derived stem cells (hASCs) subcutaneously implanted in mice we did not identify an adverse host response1. Recently, it was shown that tissue regeneration could benefit from the polarization of M2 macrophages subpopulations 2. In this study we hypothesised that undifferentiated hASCs and derived osteoblasts and chondrocytes are able to switch murine bone marrow-derived macrophages (mBMMÃ s) into M2 phenotype, aiding tissue regeneration. Murine BMMÃ s were plated in direct contact with undifferentiated and osteo or chondro-differentiated hASCs for 4 h, 10 h, 24 h and 72 h. The cytokine profile was analysed by qRT-PCR and the surface markers were detected by flow cytometry. The direct interaction of both cell types was observed by time lapse microscopy. The results showed that mBMMÃ s polarized after contacting tissue culture polystyrene. This M2 phenotype was maintained along the experiment in direct contact with both undifferentiated and osteo or chondro-differentiated hASCs. This was confirmed by the expression of IL-1, IL-10, IL-4, TNF-a and IFN-g (genetic profile) and surface markers (CD206 + + , CD336 + + , MHC II + and CD86 + + ) detection. These data suggest the potential of hASCs in contemporary xenogenic tissue engineering and regenerative medicine strategies, as well as host immune system modulation in autoimmune diseases.
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r=0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Molecular e Saúde).