13 resultados para Cyanobacteria -- Biodegradation
em Universidade do Minho
Resumo:
The effect of α-amylase degradation on the release of gentamicin from starch-conjugated chitosan microparticles was investigated up to 60 days. Scanning electron microscopic observations showed an increase in the porosity and surface roughness of the microparticles as well as reduced diameters. This was confirmed by 67% weight loss of the microparticles in the presence of α-amylase. Over time, a highly porous matrix was obtained leading to increased permeability and increased water uptake with possible diffusion of gentamicin. Indeed, a faster release of gentamicin was observed with α-amylase. Starch-conjugated chitosan particles are non-toxic and highly biocompatible for an osteoblast (SaOs-2) and fibroblast (L929) cell line as well as adipose-derived stem cells. When differently produced starch-conjugated chitosan particles were tested, their cytotoxic effect on SaOs-2 cells was found to be dependent on the crosslinking agent and on the amount of starch used.
Resumo:
[Excerpt] Anaerobic bioremediation is an important alternative for the common aerobic cleanup of subsurface petroleum-contaminated soil and water. Microbial communities involved in anaerobic oil biodegradation are scarcely studied, and only few mechanisms of anaerobic hydrocarbons degradation are described. In this work, microbial degradation of aliphatic hydrocarbons (AHC) was studied by using culture-dependent and culture-independent approaches. Hexadecane and hexadecene-degrading microbial communities were enriched under sulfate-reducing and methanogenic conditions. The microorganisms present in the enriched cultures were identified by 16S rRNA gene sequencing. (...)
Resumo:
Excessive accumulation of Long Chain Fatty Acids (LCFA) in methanogenic bioreactors is the cause of process failure associated to a severe decrease in methane production. In particular, fast and persistent accumulation of palmitate is critical and still not elucidated. Aerobes or facultative anaerobes were detected in those reactors, raising new questions on LCFA biodegradation. To get insight into the influence of oxygen, two bioreactors were operated under microaerophilic and anaerobic conditions, with oleate at 1 and 4 gCOD/(L d). Palmitate accumulated up to 2 and 16 gCOD/L in the anaerobic and microaerophilic reactor, respectively, which shows the importance of oxygen in this conversion. A second experiment was designed to understand the dynamics of oleate to palmitate conversion. A CSTR and a PFR were assembled in series and fed with oleate under microaerophilic conditions. HRT from 6 to 24 h were applied in the CSTR, and 14 to 52 min in the PFR. In the PFR a biofilm was formed where palmitate accounted for 82% of total LCFA. Pseudomonas was the predominant genus (42 %) in this biofilm, highlighting the role of aerobic and facultative anaerobic bacteria in LCFA bioconversion.
Resumo:
Silk fibroin (SF) is a commonly available natural biopolymer produced in specialized glands of arthropods, with a long history of use in textile production and also in health cares. The exceptional intrinsic properties of these fibers, such as self-assembly, machinability, biocompatibility, biodegradation or non-toxicity, offer a wide range of exciting opportunities [1]. It has long been recognized that silk can be a rich source of inspiration for designing new materials with tailored properties, enhanced performance and high added value for targeted applications, opening exciting new prospects in the domain of materials science and related technological fields, including bio-friendly integration, miniaturization and multifunctionalization. In recent years it has been demonstrated that fibroin is an excellent material for active components in optics and photonics devices. Progress in new technological fields such as optics, photonics and electronics are emerging [2,3]. The incorporation of polymer electrolytes as components of various devices (advanced batteries, smart windows, displays and supercapacitors) offers significant advantages with respect to traditional electrolytes, including enhanced reliability and improved safety. SF films are particularly attractive in this context. They have near-perfect transparency across the VIS range, surface flatness (together with outstanding mechanical robustness), ability to replicate patterned substrates and their thickness may be easily tailored from a few nanometers to hundreds of micrometers through spin-casting of a silk solution into subtract. Moreover, fibroin can be added to other biocomponents or salts in order to modify the biomaterial properties leading to optimized and total different functions. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating SF films doped with lithium triflate and lithium tetrafluoroborate (LiTFSI and LiBF4, respectively) as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging. Aiming to evaluate the performance of the ion conducting SF membranes doped with LiTFSI and LiBF4 (SF-Li), small ECDs with glass/ITO/WO3/SF-Li/CeO2-TiO2/ITO/glass configuration were assembled and characterized. The device exhibited, after 4500 cycles, the insertion of charge at -3.0 V reached –1.1 mC.cm-2 in 15 s. After 4500 cycles the window glass-staining, glass/ITO/WO3/Fibrin-Li salts electrolyte/CeO2-TiO2/ITO/glass configuration was reversible and featured a T 8 % at λ = 686 nm
Resumo:
Current societal challenges increasingly demand the need to seek for efficient and sustainable solutions to daily problems. Construction, as a result of its activity, is one of the main responsible industry for the exploitation of resources and greenhouse gas emissions. In this way, several research works are being undertaken to change some of the current practices. This paper presents the work being done at University of Minho to study de degradation of natural fibers when used as a sustainable solution for soil reinforcement. Jute and sisal fibrous structures (0º/90º) were studied in terms of their degradation over time, when incorporated into soil and when subject to accelerated aging tests in a QUV weathering test equipment. Results show that the process of biodegradation of natural fibers is clearly accelerated by the action of temperature, moisture and solar radiation, explaining further degradation of jute and sisal fibers when exposed to these factors, although more pronounced in jute fabric structures.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica
Resumo:
Olive mill wastewaters (OMW) and vinasses (VS) are effluents produced respectively by olive mills and wineries, both sectors are of great economic importance in Mediterranean countries. These effluents cause a large environmental impact, when not properly processed, due to their high concentration of phenolic compounds, COD and colour. OMW may be treated by biological processes but, in this case, a dilution is necessary, increasing water consumption. The approach here in proposed consists on the bioremediation of OMW and VS by filamentous fungi. In a screening stage, three fungi (Aspergillus ibericus, Aspergillus uvarum, Aspergillus niger) were selected to bioremediate undiluted OMW, two-fold diluted OMW supplemented with nutrients, and a mixture of OMW and VS in the proportion 1:1 (v/v). Higher reductions of phenolic compounds, colour and COD were achieved mixing both residues; with A. uvarum providing the best results. In addition, the production of enzymes was also evaluated during this bioremediation process, detecting in all cases lipolytic, proteolytic and tannase activities. A. ibericus, A. uvarum and A. niger achieved the highest value of lipase (1253.7 ± 161.2 U/L), protease (3700 ± 124.3 U/L) and tannase (284.4 ± 12.1 U/L) activities, respectively. Consequently, this process is an interesting alternative to traditional processes to manage these residues, providing simultaneously high economic products, which can be employed in the same industries.
Resumo:
The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.
Resumo:
Lactic acid bacteria (LAB) play a key role in the biopreservation of a wide range of fermented food products, such as yogurt, cheese, fermented milks, meat, fish, vegetables (sauerkraut, olives and pickles), certain beer brands, wines and silage, allowing their safe consumption, which gave to these bacteria a GRAS (Generally Recognised as Safe) status. Besides that, the use of LAB in food and feed is a promising strategy to reduce the exposure to dietary mycotoxins, improving their shelf life and reducing health risks, given the unique mycotoxin decontaminating characteristic of some LAB. Mycotoxins present carcinogenic, mutagenic, teratogenic, neurotoxic and immunosuppressive effects over animals and Humans, being the most important ochratoxin A (OTA), aflatoxins (AFB1), trichothecenes, zearalenone (ZEA), fumonisin (FUM) and patulin. In a previous work of our group it was observed OTA biodegradation by some strains of Pediococcus parvulus isolated from Douro wines. So, the aim of this study was to enlarge the screening of the biodetoxification over more mycotoxins besides OTA, including AFB1, and ZEA. This ability was checked in a collection of LAB isolated from vegetable (wine, olives, fruits and silage) and animal (milk and dairy products, sausages) sources. All LAB strains were characterized phenotypically (Gram, catalase) and genotypically. Molecular characterisation of all LAB strains was performed using genomic fingerprinting by MSP- PCR with (GTG)5 and csM13 primers. The identification of the isolates was confirmed by 16S rDNA sequencing. To study the ability of LAB strains to degrade OTA, AFB1 and ZEA, a MRS broth medium was supplemented with 2.0 g/mL of each mycotoxin. For each strain, 2 mL of MRS supplemented with the mycotoxins was inoculated in triplicate with 109 CFU/mL. The culture media and bacterial cells were extracted by the addition of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v) to the culture tubes. A 2 mL sample was then collected and filtered into a clean 2 mL vial using PP filters with 0.45 m pores. The samples were preserved at 4 °C until HPLC analysis. Among LAB tested, 10 strains isolated from milk were able to eliminate AFB1, belonging to Lactobacillus casei (7), Lb. paracasei (1), Lb. plantarum (1) and 1 to Leuconostoc mesenteroides. Two strains of Enterococcus faecium and one of Ec. faecalis from sausage eliminated ZEA. Concerning to strains of vegetal origin, one Lb. plantarum isolated from elderberry fruit, one Lb. buchnerii and one Lb. parafarraginis both isolated from silage eliminated ZEA. Other 2 strains of Lb. plantarum from silage were able to degrade both ZEA and OTA, and 1 Lb. buchnerii showed activity over AFB1. These enzymatic activities were also verified genotypically through specific gene PCR and posteriorly confirmed by sequencing analysis. In conclusion, due the ability of some strains of LAB isolated from different sources to eliminate OTA, AFB1 and ZEA one can recognize their potential biotechnological application to reduce the health hazards associated with these mycotoxins. They may be suitable as silage inoculants or as feed additives or even in food industry.
Resumo:
A ocorrência de bolores micotoxigénicos pertencentes aos géneros Aspergillus, Penicillium e Fusarium em alimentos para consumo Humano e animal, tem um impacto importante sobre a saúde pública e constitui também um importante problema económico. Isto é devido à síntese por este tipo de fungos filamentosos de metabolitos altamente tóxicos conhecidos como micotoxinas. A maioria das micotoxinas são substâncias cancerígenas, mutagénicas, neurotóxicas e imunossupressoras, sendo a ocratoxina A (OTA) uma das mais importantes. A OTA é uma micotoxina, tóxica para os animais e Humanos principalmente devido às suas propriedades nefrotóxicas. Alguns grupos de bactérias gram positivas nomeadamente as bactérias do ácido láctico (BAL) são capazes de controlar o crescimento de fungos, melhorando e aumentando a vida útil de muitos produtos fermentados e, assim, reduzir os riscos para a saúde provocados pela exposição às micotoxinas. Algumas BAL são, também, capazes de destoxificar certas micotoxinas. Em trabalhos anteriores do nosso grupo foi observada a biodegradação da OTA por estirpes de Pediococcus parvulus isoladas de vinhos do Douro. Assim, com este trabalho, pretendeu-se compreender com maior detalhe o processo de biodegradação da OTA pelas referidas estirpes e identificar quais as enzimas que estão associadas à sua biodegradação. Para atingir este objetivo utilizaram-se algumas ferramentas ioinformáticas (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV), desenharam-se primers específicos e realizaram-se PCR específicos para os genes envolvidos. Através da utilização de ferramentas de bioinformática, foi possível identificar várias proteínas que pertencem à família das carboxipeptidases e que podem eventualmente participar no processo da degradação da OTA, tais como D-Ala-D-Ala carboxipeptidase serínica e carboxipeptidase membranar. Estas BAL podem desempenhar um papel importante na destoxificação da OTA, sendo as carboxipeptidases uma das enzimas envolvidas na sua biodegradação.
Resumo:
Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.
Resumo:
The use of chemicals and chemical derivatives in agriculture and industry has contributed to their accumulation and persistence in the environment. Persistent organic pollutants (POPs) are among the environmental pollutants of most concern since, when improperly handled and disposed, they can persist in the environment, bioaccumulate through the food web, and may create serious public health and environmental problems. Development of an effective degradation process has become an area of intense research. The physical/chemical methods employed, such as volatilization, evaporation, photooxidation, adsorption, or hydrolysis, are not always effective, are very expensive, and, sometimes, lead to generation/disposal of other contaminants. Biodegradation is one of the major mechanisms by which organic contaminants are transformed, immobilized, or mineralized in the environment. A clear understanding of the major processes that affect the interactions between organic contaminants, microorganisms, and environmental matrix is, thus, important for determining persistence of the compounds, for predicting in situ transformation rates, and for developing site remediation. Information on their risks and impact and occurrence in the different environmental matrices is also important, in order to attenuate their impact and apply the appropriate remediation process. This chapter provides information on the fate of pesticides and polycyclic aromatic hydrocarbons (PAHs), their impact, bioavailability, and biodegradation. © Springer Science+Business Media Dordrecht 2014.