18 resultados para Customer support
em Universidade do Minho
Resumo:
Dissertação de mestrado em Sistemas de Informação
Resumo:
Autor proof
Resumo:
The assessment of concrete mechanical properties during construction of concrete structures is of paramount importance for many intrinsic operations. However many of the available non-destructive methods for mechanical properties have limitations for use in construction sites. One of such methodologies is EMM-ARM, which is a variant of classic resonant frequency methods. This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength. To achieve the aforementioned objective, a set of adaptations to the method have been successfully implemented and tested: (i) the reduction of the beam span; (ii) the use of a different mould material and (iii) a new support system for the beams. Based on these adaptations, a reusable mould was designed to enable easier systematic use of EMMARM. A pilot test was successfully performed under in-situ conditions during a bridge construction.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
In order to create safer schools, the Chilean authorities published a Standard regarding school furniture dimensions. The aims of this study are twofold: to verify the existence of positive secular trend within the Chilean student population and to evaluate the potential mismatch between the anthropometric characteristics and the school furniture dimensions defined by the mentioned standard. The sample consists of 3078 subjects. Eight anthropometric measures were gathered, together with six furniture dimensions from the mentioned standard. There is an average increase for some dimensions within the Chilean student population over the past two decades. Accordingly, almost 18% of the students will find the seat height to be too high. Seat depth will be considered as being too shallow for 42.8% of the students. It can be concluded that the Chilean student population has increased in stature, which supports the need to revise and update the data from the mentioned Standard. Practitioner Summary: Positive secular trend resulted in high levels of mismatch if furniture is selected according to the current Chilean Standard which uses data collected more than 20 years ago. This study shows that school furniture standards need to be updated over time.
Resumo:
Customer lifetime value (LTV) enables using client characteristics, such as recency, frequency and monetary (RFM) value, to describe the value of a client through time in terms of profitability. We present the concept of LTV applied to telemarketing for improving the return-on-investment, using a recent (from 2008 to 2013) and real case study of bank campaigns to sell long- term deposits. The goal was to benefit from past contacts history to extract additional knowledge. A total of twelve LTV input variables were tested, un- der a forward selection method and using a realistic rolling windows scheme, highlighting the validity of five new LTV features. The results achieved by our LTV data-driven approach using neural networks allowed an improvement up to 4 pp in the Lift cumulative curve for targeting the deposit subscribers when compared with a baseline model (with no history data). Explanatory knowledge was also extracted from the proposed model, revealing two highly relevant LTV features, the last result of the previous campaign to sell the same product and the frequency of past client successes. The obtained results are particularly valuable for contact center companies, which can improve pre- dictive performance without even having to ask for more information to the companies they serve.
Resumo:
telligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in or- der to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelli- gence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining proce- dure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or de- nial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of ar- ticles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.
Resumo:
"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"
Resumo:
Due to the increasing acceptance of BPM, nowadays BPM tools are extensively used in organizations. Core to BPM are the process modeling languages, of which BPMN is the one that has been receiving most attention these days. Once a business process is described using BPMN, one can use a process simulation approach in order to find its optimized form. In this context, the simulation of business processes, such as those defined in BPMN, appears as an obvious way of improving processes. This paper analyzes the business process modeling and simulation areas, identifying the elements that must be present in the BPMN language in order to allow processes described in BPMN to be simulated. During this analysis a set of existing BPM tools, which support BPMN, are compared regarding their limitations in terms of simulation support.
Resumo:
The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.
Resumo:
The observational method in tunnel engineering allows the evaluation in real time of the actual conditions of the ground and to take measures if its behavior deviates considerably from predictions. However, it lacks a consistent and structured methodology to use the monitoring data to adapt the support system in real time. The definition of limit criteria above which adaptation is required are not defined and complex inverse analysis procedures (Rechea et al. 2008, Levasseur et al. 2010, Zentar et al. 2001, Lecampion et al. 2002, Finno and Calvello 2005, Goh 1999, Cui and Pan 2012, Deng et al. 2010, Mathew and Lehane 2013, Sharifzadeh et al. 2012, 2013) may be needed to consistently analyze the problem. In this paper a methodology for the real time adaptation of the support systems during tunneling is presented. In a first step limit criteria for displacements and stresses are proposed. The methodology uses graphics that are constructed during the project stage based on parametric calculations to assist in the process and when these graphics are not available, since it is not possible to predict every possible scenario, inverse analysis calculations are carried out. The methodology is applied to the “Bois de Peu” tunnel which is composed by two tubes with over 500 m long. High uncertainty levels existed concerning the heterogeneity of the soil and consequently in the geomechanical design parameters. The methodology was applied in four sections and the results focus on two of them. It is shown that the methodology has potential to be applied in real cases contributing for a consistent approach of a real time adaptation of the support system and highlight the importance of the existence of good quality and specific monitoring data to improve the inverse analysis procedure.
Resumo:
Objectives: This study analyzed the moderating role of partners’ support and satisfaction with healthcare services in the relationship between psychological morbidity and adherence to diet in patients with type 2 diabetes (T2DM). Methods: Participants were 387 recently diagnosed T2DM patients that answered the following instruments: Revised Summary of Diabetes Self- Care Activities Measure, Hospital Anxiety and Depression Scales, Multidimensional Diabetes Questionnaire and Patient Satisfaction Questionnaire. Results: Partners’ positive and negative support moderated the relationship between psychological morbidity and adherence to diet. Satisfaction with healthcare services also moderated the relationship between psychological morbidity and adherence to diet. Conclusions: Intervention programs to promote adherence to diet in patients with type 2 diabetes should focus on partners’ support and patient satisfaction with healthcare services.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Many funding agencies have Open Access mandates in place, but how often are scientific publications as outputs linked to funding details? The benefits of linking funding information to publications as part of the deposit workflow can assist in adhering to Open Access mandates. This paper examines how OpenAIRE – Open Access Infrastructure for Research in Europe – can ease monitoring Open Access and reporting processes for funders, and presents some results and opportunities. It also outlines how it relies on cleaned and curated repository content, a vital cog in the ever turning wheel of the global scholarly landscape, and the benefits it brings.
Resumo:
Dissertação de mestrado em Engenharia Industrial