21 resultados para Culturally and linguistically diverse
em Universidade do Minho
Resumo:
Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g., bone and central nervous system) that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF), among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.
Resumo:
Doctoral thesis in Marketing and Strategy.
Resumo:
Dissertação de mestrado em Engenharia Humana
Resumo:
FOSTER aims to support different stakeholders, especially young researchers, in adopting open access in the context of the European Research Area (ERA) and in complying with the open access policies and rules of participation set out for Horizon 2020 (H2020). FOSTER establish a European-wide training programme on open access and open data, consolidating training activities at downstream level and reaching diverse disciplinary communities and countries in the ERA. The training programme includes different approaches and delivery options: elearning, blearning, self-learning, dissemination of training materials/contents, helpdesk, face-to-face training, especially training-the-trainers, summer schools, seminars, etc.
Resumo:
Rainwater harvesting systems allow the usage of properly collected, treated and supplied rainwater for domestic use in situations without good water quality requirement. To be sustainable, a rainwater harvesting system must be truly ecological, economically viable, socially fair and culturally diverse. The key element for this system is the first-flush device, which allows the deviation of the first rains which carry a significant load of pollutants and are not suitable even for non potable use. This article develops a theoretical and experimental study on a rainwater harvesting system for use in a single family dwelling. The main goal is to describe the hydraulic operation of syphonic drainage systems by the incorporation of a first-flush device in a laboratory installed rainwater harvesting system.
Resumo:
Introduction of technologies in the workplace have led to a dramatic change. These changes have come with an increased capacity to gather data about one’s working performance (i.e. productivity), as well as the capacity to track one’s personal responses (i.e. emotional, physiological, etc.) to this changing workplace environment. This movement of self-monitoring or self-sensing using diverse types of wearable sensors combined with the use of computing has been identified as the Quantified-Self. Miniaturization of sensors, reduction in cost and a non-stop increase in the computer power capacity has led to a panacea of wearables and sensors to track and analyze all types of information. Utilized in the personal sphere to track information, a looming question remains, should employers use the information from the Quantified-Self to track their employees’ performance or well-being in the workplace and will this benefit employees? The aim of the present work is to layout the implications and challenges associated with the use of Quantified-Self information in the workplace. The Quantified-Self movement has enabled people to understand their personal life better by tracking multiple information and signals; such an approach could allow companies to gather knowledge on what drives productivity for their business and/or well-being of their employees. A discussion about the implications of this approach will cover 1) Monitoring health and well-being, 2) Oversight and safety, and 3) Mentoring and training. Challenges will address the question of 1) Privacy and Acceptability, 2) Scalability and 3) Creativity. Even though many questions remain regarding their use in the workplace, wearable technologies and Quantified-Self data in the workplace represent an exciting opportunity for the industry and health and safety practitioners who will be using them.
Resumo:
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
[Extrat] The answer to the social and economic challenges that it is assumed literacy (or its lack) puts to developed countries deeply concerns public policies of governments namely those of the OECD area. In the last decades, these concerns gave origin to several and diverse monitoring devices, initiatives and programmes for reading (mainly) development, putting a strong stress on education. UNESCO (2006, p. 6), for instance, assumes that the literacy challenge can only be met raising the quality of primary and secondary education and intensifying programmes explicitly oriented towards youth and adult literacy. (...)
Resumo:
Dissertação de mestrado em European and Transglobal Business Law
Resumo:
Biofilm research is growing more diverse and dependent on high-throughput technologies and the large-scale production of results aggravates data substantiation. In particular, it is often the case that experimental protocols are adapted to meet the needs of a particular laboratory and no statistical validation of the modified method is provided. This paper discusses the impact of intra-laboratory adaptation and non-rigorous documentation of experimental protocols on biofilm data interchange and validation. The case study is a non-standard, but widely used, workflow for Pseudomonas aeruginosa biofilm development, considering three analysis assays: the crystal violet (CV) assay for biomass quantification, the XTT assay for respiratory activity assessment, and the colony forming units (CFU) assay for determination of cell viability. The ruggedness of the protocol was assessed by introducing small changes in the biofilm growth conditions, which simulate minor protocol adaptations and non-rigorous protocol documentation. Results show that even minor variations in the biofilm growth conditions may affect the results considerably, and that the biofilm analysis assays lack repeatability. Intra-laboratory validation of non-standard protocols is found critical to ensure data quality and enable the comparison of results within and among laboratories.
Resumo:
Genome-wide studies of African populations have the potential to reveal powerful insights into the evolution of our species, as these diverse populations have been exposed to intense selective pressures imposed by infectious diseases, diet, and environmental factors. Within Africa, the Sahel Belt extensively overlaps the geographical center of several endemic infections such as malaria, trypanosomiasis, meningitis, and hemorrhagic fevers. We screened 2.5 million single nucleotide polymorphisms in 161 individuals from 13 Sahelian populations, which together with published data cover Western, Central, and Eastern Sahel, and include both nomadic and sedentary groups. We confirmed the role of this Belt as a main corridor for human migrations across the continent. Strong admixture was observed in both Central and Eastern Sahelian populations, with North Africans and Near Eastern/Arabians, respectively, but it was inexistent in Western Sahelian populations. Genome-wide local ancestry inference in admixed Sahelian populations revealed several candidate regions that were significantly enriched for non-autochthonous haplotypes, and many showed to be under positive selection. The DARC gene region in Arabs and Nubians was enriched for African ancestry, whereas the RAB3GAP1/LCT/MCM6 region in Oromo, the TAS2R gene family in Fulani, and the ALMS1/NAT8 in Turkana and Samburu were enriched for non-African ancestry. Signals of positive selection varied in terms of geographic amplitude. Some genomic regions were selected across the Belt, the most striking example being the malaria-related DARC gene. Others were Western-specific (oxytocin, calcium, and heart pathways), Eastern-specific (lipid pathways), or even population-restricted (TAS2R genes in Fulani, which may reflect sexual selection).
Resumo:
Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.
Resumo:
Ideal candidates for the repair of robust biological tissues should exhibit diverse features such as biocompatibility, strength, toughness, self-healing ability and a well-defined structure. Among the available biomaterials, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, are promising for Tissue Engineering purposes as result of their high resemblance with native extracellular matrix. However, these polymeric structures often exhibit a poor mechanical behavior, hampering their use in load-bearing applications. During the last years, several efforts have been made to create new strategies and concepts to fabricate strong and tough hydrogels. Although it is already possible to shape the mechanical properties of artificial hydrogels to mimic biotissues, critical issues regarding, for instance, their biocompatibility and hierarchical structure are often neglected. Therefore, this review covers the structural and mechanical characteristics of the developed methodologies to toughen hydrogels, highlighting some pioneering efforts employed to combine the aforementioned properties in natural-based hydrogels.
Resumo:
Nowadays, the public discourses about gender equality are commonly accepted in Western society. In fact, we live in an era of “equality illusion” (Banyard, 2010) because the mainstream discourses incorporate gender in the agenda, conveying the message that feminist struggles are unnecessary today. At the same time, postfeminism (McRobbie, 2004) gains importance and demonstrates the intricacies of a neoliberal, highly individualist culture that subtly imprisons the freedoms that it is supposed to grant (Gill & Scharff, 2011). However, back in 1978, Gaye Tuchman used the expression “symbolic annihilation” to refer to how the media represented women. The author refers to a “symbolic annihilation” because sometimes it is so hidden and subtle that it becomes difficult to perceive – and to be fought. Much has improved since then; yet a lot remains the same. Over the past decades there have been marked changes in gender relations, in feminist activism, in the (media) communication industry and in society in general (Byerly, 2013; Carter, Steiner & McLaughlin, 2015; Gallagher, 2014; Gallego, 2013; Krijnen, Álvares & Van Bauwel, 2011; Krijnen & Van Bauwel, 2015; Lobo, Silveirinha, Subtil, & Torres, 2015; Ross, 2009; Silveirinha, 2001; Van Zoonen, 1994, 2010). Now, in a globalised and media saturated world, the gendered picture is, consequently, different. The contemporary grammar is marked by diverse and complex tensions (van Zoonen, 2010).