2 resultados para Cosmology, Observations
em Universidade do Minho
Resumo:
The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.
Resumo:
Data have been obtained in steady-state batch operated thermogravitational separation columns using different binary mixtures to test the theory recently published by Morgado et al. The experimental results confirm that separations by thermal diffusion are asymmetrical except when the initial concentration is 0.5 and that the asymmetry is larger as the initial concentration deviates from 0.5 and as the separation potential increases.