2 resultados para Convex Metric Spaces
em Universidade do Minho
Resumo:
In this paper, we propose an extension of the firefly algorithm (FA) to multi-objective optimization. FA is a swarm intelligence optimization algorithm inspired by the flashing behavior of fireflies at night that is capable of computing global solutions to continuous optimization problems. Our proposal relies on a fitness assignment scheme that gives lower fitness values to the positions of fireflies that correspond to non-dominated points with smaller aggregation of objective function distances to the minimum values. Furthermore, FA randomness is based on the spread metric to reduce the gaps between consecutive non-dominated solutions. The obtained results from the preliminary computational experiments show that our proposal gives a dense and well distributed approximated Pareto front with a large number of points.
Resumo:
This paper considers model spaces in an Hp setting. The existence of unbounded functions and the characterisation of maximal functions in a model space are studied, and decomposition results for Toeplitz kernels, in terms of model spaces, are established