7 resultados para Contaminated areas
em Universidade do Minho
Resumo:
Maize (Zea mays) and guinea corn (Sorghum bicolor) are major food items in Plateau state, Nigeria. A multistage sampling technique was used to select the markets and store/warehouses used for this study; sample collection employed a simple random sampling method from different sampling points within designated areas. A total of 18 representative samples were collected and analyzed for the following mycotoxins: aflatoxins (Aflatoxin B1 - AFB1, Aflatoxin B2 - AFB2, Aflatoxin G1 - AFG1 and Aflatoxin G2 - AFG2), fumonisins (Fumonisin B1 - FB1 and Fumonisin B2 - FB2 ) and cyclopiazonic acid (CPA). Out of 12 samples analyzed for Aflatoxins, AFB1 was detected in 5, AFB2 in 1, AFG1 in 1 and AFG2 in 6 samples respectively. The highest concentration of AFB1 and AFG2 were found in maize samples from Pankshin market. Only maize samples from Mangu market were contaminated with AFB2 and also harboured the lowest concentration of AFG2. AFG1 contamination occurred in only guinea corn from Shendam market. and FB1 was detected in all 18 samples analyzed. The mycotoxin CPA was not detected in any of the samples. Aflatoxins levels in analyzed samples were regarded as safe based on Nigerian and European Union maximum permissible levels of 4g/kg. With the exception of two samples, FB1 levels in analyzed maize samples were within European Union maximum permissible levels of 1,000 to 3000g/kg. The health and food safety implications of these results for the human and animal population are further discussed.
Resumo:
High levels of marine salt deposition present in coastal areas have a relevant effect on road runoff characteristics. This study assesses this effect with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included 30 rainfall events, in different weather, traffic, and salt deposition conditions. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological, and traffic parameters were continuously measured. The salt deposition rates were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The relation between road runoff pollutants and independent variables associated with weather, traffic, and salt deposition conditions was assessed. Significant correlations among pollutants were observed. A high salinity concentration and its influence on the road runoff were confirmed. Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed.
Resumo:
Organic-inorganic hybrid (OIH) sol-gel coatings based on ureasilicates (U(X)) have promising properties for use as eco-friendly coatings on hot dip galvanized steel (HDGS) and may be considered potential substitutes for pre-treatment systems containing Cr(VI). These OIH coatings reduce corrosion activity during the initial stages of contact of the HDGS samples with highly alkaline environments (cementitious media) and allow the mitigation of harmful effects of an initial excessive reaction between cement pastes and the zinc layer. However, the behavior of HDGS coated with U(X) in the presence of chloride ions has never been reported. In this paper, the performance of HDGS coated with five different U(X) coatings was assessed by electrochemical measurements in chloride-contaminated simulated concrete pore solution (SCPS). U(X) sol-gel coatings were produced and deposited on HDGS by a dip coating method. The coatings performance was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curves measurements, macrocell current density and polarization resistance in contact with chloride-contaminated SCPS. The SEM/EDS analyses of the coatings before and after the tests were also performed. The results showed that the HDGS samples coated with the OIH coatings exhibited enhanced corrosion resistance to chloride ions when compared to uncoated galvanized steel.
Resumo:
The aim of this study was to evaluate tetracycline antibiotic (TA) removal from contaminated water by Moringa oleifera seed preparations. The composition of synthetic water approximate river natural contaminated water and TA simulated its presence as an emerging pollutant. Interactions between TA and protein preparations (extract; fraction and lectin) were also evaluated. TA was determined by solid phase extraction followed by high performance liquid chromatography - mass spectrometry. Moringa extract and flour removed TA from water. Extract removed TA in all concentrations and better removal (40%) was obtained with 40 mg L1; seed flour (particles < 5mm), 1.25 g L1 and 2.50 g L1 removed 28 and 29% of tetracycline, respectively; particles > 5 mm (0.50 g L1) removed 55% of antibiotic. Interactions between TA and seed preparations were assayed by haemagglutinating activity (HA). Specific HA (SHA) of extract (pH 7) was abolished with tetracycline (5 mg L1); fraction (75%) and lectin HA (97%) were inhibited with TA. Extract SHA decreased by 75% at pH 8. Zeta potential (ZP) of extract 700 mg L1 and tetracycline 50 mg L1 , pH range 5 to 8, showed different results. Extract ZP was more negative (10.73 mV to 16.00 mV) than tetracycline ZP (0.27 mV to 20.15 mV); ZP difference was greater in pH 8. The focus of this study was achieved since moringa preparations removed TA from water and compounds interacting with tetracycline involved at least lectin binding sites. This is a natural process, which do not promote environmental damage.
Resumo:
Mycotoxins are toxic secondary metabolites produced by certain moulds, being ochratoxin A (OTA) one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [1]. According to the Regulation No. 1881/2006 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Therefore, the aim of this work was to know the effect of different fining agents on OTA removal, as well as their impact on white and red wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white and red wines. Trials were performed in wines artificially supplemented (at a final concentration of 10 µg/L) with OTA. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. In red wine, removals between 6-19% were obtained with egg albumin, yeast cell walls, pea protein, isinglass, gelatine, polyvinylpolypyrrolidone and chitosan. The most effective fining agents in removing OTA from red wine were an activated carbon (66%) followed again by the commercial formulation (55%), being activated carbon a well-known adsorbent of mycotoxins. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
Mycotoxins are toxic secondary metabolites produced by certain molds. Ochratoxin A (OTA) is one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA in wine is a risk to consumer health [1]. According to the Regulation No. 123/2005 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Then, it is important to control its occurrence. So, the aim of this work was to know the effect of different fining agents on OTA removal from white wine.
Resumo:
The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [2]. The maximum acceptable level of OTA in wines is 2.0 g/kg according to the Commission regulation No. 1881/2006 [3]. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analysis were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection according to Abrunhosa and Venâncio [4]. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatine, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatine, bentonite and activated carbon (C8) reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.