45 resultados para Construction and demolition

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of construction and demolition waste (C&DW) in the construction industry is an important contribution to attain sustainability in the sector. The roads are among the civil engineering works which can use larger quantities of C&DW recycled aggregates. In Portugal, the limit values for the properties of C&DW recycled aggregates that can be used in the roads of Portuguese Road Network are defined by two Laboratório Nacional de Engenharia Civil (LNEC) technical specifications (TS), in accordance to Portuguese Decree-law no. 46/2008 of May 12th. Municipal and rural roads and trenches have specific characteristics that can enable the use of C&DW of lower quality than those required by existing LNEC TS, and even then ensuring an adequate performance. However, given the absence of specific regulation for those applications, the Portuguese Environment Agency requires compliance with the existing LNEC TS, which represents an obstacle to recycling a significant part of the C&DW, in particular at a local government level. This paper presents guidelines for the recycling of C&DW in municipal and rural roads and in trenches, which could be considered in a new forthcoming LNEC TS. In the preparation of the guidelines, the bibliography collected and analysed, the information gathered from the application of C&DW in a municipal and rural roads of a Portuguese municipality and in the roadways of a Portuguese resort, and the results of laboratory tests carried out on samples collected in the Portuguese municipality were taken into consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays cities are facing several environmental problems due to the population migration to urban areas, which is causing urban sprawl. This way, it is very important to define solutions to improve Land Use Efficiency (LUE). This article proposes the use of community buildings features as a solution to increase land use efficiency. Community buildings consider the design of shared building spaces to reduce the floor area of buildings. This work tests the performance of some case-study buildings regarding LUE to analyse its possible pros and cons. A quantifiable method is used to assess buildingsâ LUE, which considers the number of occupants, the gross floor area, the functional area, the implantation area and the allotment area. Buildings with higher values for this index have reduced environmental impacts because they use less construction materials, produce less construction and demolition wastes and require less energy for building operation. The results showed that the use of community building features can increase Land Use Efficiency of buildings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Joints play a major role in the structural behaviour of old timber frames [1]. Current standards mainly focus on modern dowel-type joints and usually provide little guidance (with the exception of German and Swiss NAs) to designers regarding traditional joints. With few exceptions, see e.g. [2], [3], [4], most of the research undertaken today is mainly focused on the reinforcement of dowel-type connections. When considering old carpentry joints, it is neither realistic nor useful to try to describe the behaviour of each and every type of joint. The discussion here is not an extra attempt to classify or compare joint configurations [5], [6], [7]. Despite the existence of some classification rules which define different types of carpentry joints, their applicability becomes difficult. This is due to the differences in the way joints are fashioned depending, on the geographical location and their age. In view of this, it is mandatory to check the relevance of the calculations as a first step. This first step, to, is mandatory. A limited number of carpentry joints, along with some calculation rules and possible strengthening techniques are presented here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The behaviour of masonry elements under in-plane and out-of-plane loads can be improved through the application of strengthening systems based on reinforcing overlays. After strengthening, the transition region between the original substrate and the strengthening layer is especially stressed, and premature failure of the strengthened masonry is reached if insufficient interfacial capacity is assured. Therefore, the assessment of the mechanical behaviour of the interface is critical to the development of the masonry strengthening system based on the application of strengthening overlays. In this research a method for the characterization of the interface behaviour between two different materials, a polypropylene fibre reinforced mortar (PFRM) and a ceramic brick used for masonry construction is presented. Direct shear tests were carried out in couplet specimens. Due to the orthotropic nature of the bricks surface, the shear load was applied along three different directions in order to perform an overall estimation of the interface behaviour. The peak and residual shear stresses, as well as the failure modes, were obtained at different levels of the normal stress. Based on these experimental results constitutive laws were assessed for the simulation of the interface mechanical behaviour based on the Mohr and Mohr-Coulomb failure criteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of the construction caused a need to use more effective equipments, capable of meeting the increasingly demanding deadlines for the completion of works. In this context, the safety and efficiency of equipment have become key aspects in order to optimize the execution time of the works, as well as reducing labor costs and loss of materials. With the evolution of construction and construction processes, cranes have come to represent a signal of the construction of buildings, revealing to be, in most of the cases, the main equipment of construction sites. Currently, some engineers revels some apprehension regarding the use and handling of cranes which is natural and acceptable, since an equipment failure can lead to serious or fatal accidents. The factors affecting safety management of the cranes in construction sites were investigated, identified, classified and evaluated according to their degree of importance, through interviews with representatives of the general contractors of a set of selected construction sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Available online 21 March 2016"

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims to present the main features of the roman theatre of Bracara Augusta identified in 1999. Although it is still under study, a significant set of evidence made it possible to present its characteristics, to value the socioeconomic issues related with its construction and to discuss the aspects related to the development of the NW Iberian Peninsula cities, where traditionally this type of equipment was believed to be absent, and to understand the diffusion of roman public architecture models in peripheral regions within the Western Empire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of sustainable solutions in construction is not just an option, but is increasingly becoming a need of the Society. Thus, nowadays the recycling of waste materials is a growing technology that needs to be continuously improved, namely by researching new solutions for waste valorisation and by increasing the amount of wastes reused. In the paving industry, the reuse of reclaimed asphalt (RA) is becoming common practice, but needs further research work. Thus, this study aims to increase the incorporation of RA and other waste materials in the production of recycled asphalt mixtures in order to improve their mechanical, environmental and economic performance. Recycled mixtures with 50% RA were analysed in this study, including: i) RA selection, preparation and characterization; ii) incorporation of other waste materials as binder additives or modifiers, like used motor oil (UMO) and waste high density polyethylene (HDPE); iii) production of different mixtures (without additives; with UMO; with UMO and HDPE) and comparison of their performance in order to assess the main advantages of each solution. With this study it was concluded that up to 7.5 % of UMO and 4.0 % of HDPE can be used in a new modified binder for asphalt mixtures with 50 % of RA, which have excellent properties concerning the rutting with WTS = 0.02 mm/103 cycles, the fatigue resistance with ε6 = 160.4, and water sensitivity with an ITSR of 81.9 %.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The future of the construction industry will require changes at many levels. One is the ability of companies to adapt to new challenges, converting needs to opportunities and simultaneously contributing to the solving of social and environmental problems. In the coming decades we will see a change in attitude in the industry, with a strong tendency to adopt natural and recycled materials, as well as bet on green technology and social innovation oriented to emerging countries. On the other hand, emerging countries have a high demand for housing construction on a large scale, but the current techniques in the developed countries for building requires a large amount of natural resources and skilled labor. This contextualization brings sustainability problems for the construction sector in emerging countries, often with scarce natural resources and with the construction sector underdeveloped. Through a cooperative action between the construction company Mota-Engil Engineering and the University of Minho in Portugal, a construction technology was developed based on the use of Compressed Earth Blocks as part of a social concept for innovative small houses, favoring the adoption of local and natural materials and with the main premise of being dedicated to self-construction. The HiLoTec project - Development of a Sustainable Self-Construction System for Developing Countries was based on this idea. One of the several results of this project is this construction manual. To Mota-Engil the project was a platform for incubation of knowledge about earth construction and to obtain a constructive solution validated technically and scientifically, suitable to be implemented in the markets where it operates. For the University of Minho the project was an opportunity to strengthen skills in research, laboratory and scientific development, through the development of engineering studies, architecture and sustainability, as well as supporting the doctoral scholarships and dissemination of scientific publications. May the knowledge of this project be of benefit, in the future, for the welfare of those who build a HiLoTec house.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Machinery safety issues are a challenge facing manufacturers who are supposed to create and provide products in a better and faster way. In spite of their construction and technological advance, they still contribute to many potential hazards for operators and those nearby. OBJECTIVE: The aim of this study is to investigate safety aspects of metal machinery offered for sale on Internet market according to compliance with minimum and fundamental requirements. METHODS: The study was carried out with the application of a checklist prepared on the basis of Directive 2006/42/EC and Directive 2009/104/EC and regulations enforcing them into Polish law. RESULTS: On the basis of the study it was possible to reveal the safety aspects that were not met in practice. It appeared that in the case of minimum requirements the most relevant problems concerned information, signal and control elements, technology and machinery operations, whereas as far as fundamental aspects are concerned it was hard to assure safe work process. CONCLUSIONS: In spite of the fact that more and more legal acts binding in the Member Countries of the European Union are being introduced to alleviate the phenomenon, these regulations are often not fulfilled.