6 resultados para Computation time delay
em Universidade do Minho
Resumo:
Buruli Ulcer (BU) is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions), lesions' size (>15 cm diameter) or WHO Category (WHO Category 3 lesions). There are studies reporting an association between delay in seeking medical care and the development of ulcerative forms of BU or osteomyelitis, but the effect of time-delay on the emergence of lesions classified as severe has not been addressed. To address both issues, and in a cohort of laboratory-confirmed BU cases, 476 patients from a medical center in Allada, Benin, were studied. In this laboratory-confirmed cohort, we validated previous observations, demonstrating that time-delay is statistically related to the clinical form of BU. Indeed, for non-ulcerated forms (nodule, edema, and plaque) the median time-delay was 32.5 days (IQR 30.0-67.5), while for ulcerated forms it was 60 days (IQR 20.0-120.0) (p = 0.009), and for bone lesions, 365 days (IQR 228.0-548.0). On the other hand, we show here that time-delay is not associated with the more severe phenotypes of BU, such as multi-focal lesions (median 90 days; IQR 56-217.5; p = 0.09), larger lesions (diameter >15 cm) (median 60 days; IQR 30-120; p = 0.92) or category 3 WHO classification (median 60 days; IQR 30-150; p = 0.20), when compared with unifocal (median 60 days; IQR 30-90), small lesions (diameter =15 cm) (median 60 days; IQR 30-90), or WHO category 1+2 lesions (median 60 days; IQR 30-90), respectively. Our results demonstrate that after an initial period of progression towards ulceration or bone involvement, BU lesions become stable regarding size and focal/multi-focal progression. Therefore, in future studies on BU epidemiology, severe clinical forms should be systematically considered as distinct phenotypes of the same disease and thus subjected to specific risk factor investigation.
Resumo:
This work presents a model and a heuristic to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving problems with one vehicle was presented, and this heuristic provides good results in terms of accuracy and computation time.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
We study the problem of privacy-preserving proofs on authenticated data, where a party receives data from a trusted source and is requested to prove computations over the data to third parties in a correct and private way, i.e., the third party learns no information on the data but is still assured that the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third party should be able to verify the validity with respect to the specific data authenticated by the source — even without having access to that source. This problem is motivated by various scenarios emerging from several application areas such as wearable computing, smart metering, or general business-to-business interactions. Furthermore, these applications also demand any meaningful solution to satisfy additional properties related to usability and scalability. In this paper, we formalize the above three-party model, discuss concrete application scenarios, and then we design, build, and evaluate ADSNARK, a nearly practical system for proving arbitrary computations over authenticated data in a privacy-preserving manner. ADSNARK improves significantly over state-of-the-art solutions for this model. For instance, compared to corresponding solutions based on Pinocchio (Oakland’13), ADSNARK achieves up to 25× improvement in proof-computation time and a 20× reduction in prover storage space.
Resumo:
One of the major challenges in the development of an immersive system is handling the delay between the tracking of the user’s head position and the updated projection of a 3D image or auralised sound, also called end-to-end delay. Excessive end-to-end delay can result in the general decrement of the “feeling of presence”, the occurrence of motion sickness and poor performance in perception-action tasks. These latencies must be known in order to provide insights on the technological (hardware/software optimization) or psychophysical (recalibration sessions) strategies to deal with them. Our goal was to develop a new measurement method of end-to-end delay that is both precise and easily replicated. We used a Head and Torso simulator (HATS) as an auditory signal sensor, a fast response photo-sensor to detect a visual stimulus response from a Motion Capture System, and a voltage input trigger as real-time event. The HATS was mounted in a turntable which allowed us to precisely change the 3D sound relative to the head position. When the virtual sound source was at 90º azimuth, the correspondent HRTF would set all the intensity values to zero, at the same time a trigger would register the real-time event of turning the HATS 90º azimuth. Furthermore, with the HATS turned 90º to the left, the motion capture marker visualization would fell exactly in the photo-sensor receptor. This method allowed us to precisely measure the delay from tracking to displaying. Moreover, our results show that the method of tracking, its tracking frequency, and the rendering of the sound reflections are the main predictors of end-to-end delay.
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.