6 resultados para Compositional data analysis-roots in geosciences

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data article is referred to the research article entitled The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration by Uarrota et al. (2015). Food Chemistry 197, Part A, 737746. The stress duo to PPD of cassava roots leads to the formation of ROS which are extremely harmful and accelerates cassava spoiling. To prevent or alleviate injuries from ROS, plants have evolved antioxidant systems that include non-enzymatic and enzymatic defence systems such as ascorbate peroxidase, guaiacol peroxidase and polysaccharides. In this data article can be found a dataset called newdata, in RData format, with 60 observations and 06 variables. The first 02 variables (Samples and Cultivars) and the last 04, spectrophotometric data of ascorbate peroxidase, guaiacol peroxidase, tocopherol, total proteins and arcsined data of cassava PPD scoring. For further interpretation and analysis in R software, a report is also provided. Means of all variables and standard deviations are also provided in the Supplementary tables (data.long3.RData, data.long4.RData and meansEnzymes.RData), raw data of PPD scoring without transformation (PPDmeans.RData) and days of storage (days.RData) are also provided for data analysis reproducibility in R software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As huge amounts of data become available in organizations and society, specific data analytics skills and techniques are needed to explore this data and extract from it useful patterns, tendencies, models or other useful knowledge, which could be used to support the decision-making process, to define new strategies or to understand what is happening in a specific field. Only with a deep understanding of a phenomenon it is possible to fight it. In this paper, a data-driven analytics approach is used for the analysis of the increasing incidence of fatalities by pneumonia in the Portuguese population, characterizing the disease and its incidence in terms of fatalities, knowledge that can be used to define appropriate strategies that can aim to reduce this phenomenon, which has increased more than 65% in a decade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monitoring data collected during tunnel excavation can be used in inverse analysis procedures in order to identify more realistic geomechanical parameters that can increase the knowledge about the interested formations. These more realistic parameters can be used in real time to adapt the project to the real structure in situ behaviour. However, monitoring plans are normally designed for safety assessment and not especially for the purpose of inverse analysis. In fact, there is a lack of knowledge about what types and quantity of measurements are needed to succeed in identifying the parameters of interest. Also, the optimisation algorithm chosen for the identification procedure may be important for this matter. In this work, this problem is addressed using a theoretical case with which a thorough parametric study was carried out using two optimisation algorithms based on different calculation paradigms, namely a conventional gradient-based algorithm and an evolution strategy algorithm. Calculations were carried for different sets of parameters to identify several combinations of types and amount of monitoring data. The results clearly show the high importance of the available monitoring data and the chosen algorithm for the success rate of the inverse analysis process.