23 resultados para Collagen structure

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of stem cells is a promising therapeutic approach for the substantial challenge to regenerate cartilage. Considering the two prerequisites, namely the use of a 3D system to enable the chondrogenic differentiation and growth factors to avoid dedifferentiation, the diffusion efficiency of essential biomolecules is an intrinsic issue. We already proposed a liquified bioencapsulation system containing solid microparticles as cell adhesion sites1. Here, we intend to use the optimized system towards chondrogenic differentiation by encapsulating stem cells and collagenII-TGF-β3 PLLA microparticles. As a proof-of-concept, magnetite-nanoparticles were incorporated into the multilayered membrane. This can be a great advantage after implantation procedures to fixate the capsules in situ with the held of an external magnetic patch and for the follow-up through imaging. Results showed that the production of glycosaminoglycans and the expression of cartilage-relevant markers (collagen II, Sox9, aggrecan, and COMP) increased up to 28 days, while hypertrophic (collagen X) and fibrotic (collagen I) markers were downregulated. The presence of nanofibers in the newly deposited ECM was visualized by SEM, which resembles the collagen fibrils of native cartilage. The presence of the major constituent of cartilage, collagen II, was detected by immunocytochemistry and afranin-O and alcian blue stainings revealed a basophilic ECM deposition, which is characteristic of neocartilage. These findings suggest that the proposed system may provide a suitable environment for chondrogenic differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work five sources of galactomannans, Adenanthera pavonina, Cyamopsis tetragonolobus, Caesalpinia pulcherrima, Ceratonia siliqua and Sophora japonica, presenting mannose/galactose ratios of 1.3, 1.7, 2.9, 3.4 and 5.6, respectively, were used to produce galactomannan-based films. These films were characterized in terms of: water vapour, oxygen and carbon dioxide permeabilities (WVP, O 2 P and CO 2 P); moisture content, water solubility, contact angle, elongation-at-break (EB), tensile strength (TS) and glass transition temperature (T g ). Results showed that films properties vary according to the galactomannan source (different galactose distribution) and their mannose/galactose ratio. Water affinity of mannan and galactose chains and the intermolecular interactions of mannose backbone should also be considered being factors that affect films properties. This work has shown that knowing mannose/galactose ratio of galactomannans is possible to foresee galactomannan-based edible films properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida parapsilosis is nowadays an emerging opportunistic pathogen and its increasing incidence is part related to the capacity to produce biofilm. In addition, one of the most important C. parapsilosis pathogenic risk factors includes the organisms\textquoteright selective growth capabilities in hyper alimentation solutions. Thus, in this study, we investigated the role of glucose in C. parapsilosis biofilm modulation, by studying biofilm formation, matrix composition and structure. Moreover, the expression of biofilm-related genes (BCR1, FKS1 and OLE1) were analyzed in the presence of different glucose percentages. The results demonstrated the importance of glucose in the modulation of C. parapsilosis biofilm. The concentration of glucose had direct implications on the C. parapsilosis transition of yeast cells to pseudohyphae. Additionally, it was demonstrated that biofilm related genes BCR1, FKS1 and OLE1 are involved in biofilm modulation by glucose. The mechanism by which glucose enhances biofilm formation is not fully understood, however with this study we were able to demonstrate that C. parapsilosis respond to stress conditions caused by elevated levels of glucose by up-regulating genes related to biofilm formation (BCR1, FKS1 and OLE1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyurethane thermoplastic elastomer (TPU) nanocomposites were prepared by the incorporation of 1 wt% of high-structured carbon black (HSCB), carbon nanofibers (CNF), nanosilica (NS) and nanoclays (NC), following a proper high-shear blending procedure. The TPU nanofilled mechanical properties and morphology was assessed. The nanofillers interact mainly with the TPU hard segments (HS) domains, determining their glass transition temperature, and increasing their melting temperature and enthalpy. A significant improvement upon the modulus, sustained stress levels and deformation capabilities is evidenced. The relationships between the morphology and the nanofilled TPU properties are established, evidencing the role of HS domains on the mechanical response, regardless the nanofiller type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic elastomers based on a triblock copolymer styrene-butadiene-styrene (SBS) with different butadiene/styrene ratios, block structure and carbon nanotube (CNT) content were submitted to accelerated weathering in a Xenontest set up, in order to evaluate their stability to UV ageing. It was concluded that ageing mainly depends on butadiene/styrene ratio and block structure, with radial block structures exhibiting a faster ageing than linear block structures. Moreover, the presence of carbon nanotubes in the SBS copolymer slows down the ageing of the copolymer. The evaluation of the influence of ageing on the mechanical and electrical properties demonstrates that the mechanical degradation is higher for the C401 sample, which is the SBS sample with the largest butadiene content and a radial block structure. On the other hand, a copolymer derivate from SBS, the styrene-ethylene/butadiene-styrene (SEBS) sample, retains a maximum deformation of ~1000% after 80 h of accelerated ageing. The hydrophobicity of the samples decreases with increasing ageing time, the effect being larger for the samples with higher butadiene content. It is also verified that cytotoxicity increases with increasing UV ageing with the exception of SEBS, which remains not cytotoxic up to 80 h of accelerated ageing time, demonstrating its potential for applications involving exposition to environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used event-related potentials to examine interactions between mood, sentence context, and semantic memory structure in schizophrenia. Seventeen male chronic schizophrenia and 15 healthy control subjects read sentence pairs after positive, negative, or neutral mood induction. Sentences ended with expected words (EW), within-category violations (WCV), or between-category violations (BCV). Across all moods, patients showed sensitivity to context indexed by reduced N400 to EW relative to both WCV and BCV. However, they did not show sensitivity to the semantic memory structure. N400 abnormalities were particularly enhanced under a negative mood in schizophrenia. These findings suggest abnormal interactions between mood, context processing, and connections within semantic memory in schizophrenia, and a specific role of negative mood in modulating semantic processes in this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Structural Analysis of Monuments and Historical Constructions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

tThe main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOzthin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposi-tion: the flow of the reactive gases mixture (N2and O2, with a constant concentration ratio of 17:3); thesubstrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel).The obtained films exhibit significant differences. The variation of the deposition parameters inducesvariations of the composition, microstructure and morphology. These differences cause variation of theelectrical resistivity essentially correlated with the composition and structural changes. The gradualdecrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity.The dielectric characteristics of some of the high resistance TaxNyOzfilms were obtained in the sampleswith a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectricTaxNyOzfilms). Some of these films exhibited dielectric constant values higher than those reported forother tantalum based dielectric films.