10 resultados para Client-server distributed databases

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large scale distributed data stores rely on optimistic replication to scale and remain highly available in the face of net work partitions. Managing data without coordination results in eventually consistent data stores that allow for concurrent data updates. These systems often use anti-entropy mechanisms (like Merkle Trees) to detect and repair divergent data versions across nodes. However, in practice hash-based data structures are too expensive for large amounts of data and create too many false conflicts. Another aspect of eventual consistency is detecting write conflicts. Logical clocks are often used to track data causality, necessary to detect causally concurrent writes on the same key. However, there is a nonnegligible metadata overhead per key, which also keeps growing with time, proportional with the node churn rate. Another challenge is deleting keys while respecting causality: while the values can be deleted, perkey metadata cannot be permanently removed without coordination. Weintroduceanewcausalitymanagementframeworkforeventuallyconsistentdatastores,thatleveragesnodelogicalclocks(BitmappedVersion Vectors) and a new key logical clock (Dotted Causal Container) to provides advantages on multiple fronts: 1) a new efficient and lightweight anti-entropy mechanism; 2) greatly reduced per-key causality metadata size; 3) accurate key deletes without permanent metadata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O aumento da quantidade de dados gerados que se tem verificado nos últimos anos e a que se tem vindo a dar o nome de Big Data levou a que a tecnologia relacional começasse a demonstrar algumas fragilidades no seu armazenamento e manuseamento o que levou ao aparecimento das bases de dados NoSQL. Estas estão divididas por quatro tipos distintos nomeadamente chave/valor, documentos, grafos e famílias de colunas. Este artigo é focado nas bases de dados do tipo column-based e nele serão analisados os dois sistemas deste tipo considerados mais relevantes: Cassandra e HBase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia de Telecomunicações e Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

versão acessível em http://ace2015.info/wp-content/uploads/2015/11/ACE_2015_submission_148.pdf

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed data aggregation is an important task, allowing the de- centralized determination of meaningful global properties, that can then be used to direct the execution of other applications. The resulting val- ues result from the distributed computation of functions like count, sum and average. Some application examples can found to determine the network size, total storage capacity, average load, majorities and many others. In the last decade, many di erent approaches have been pro- posed, with di erent trade-o s in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of ag- gregation algorithms, it can be di cult and time consuming to determine which techniques will be more appropriate to use in speci c settings, jus- tifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally de nes the concept of aggrega- tion, characterizing the di erent types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.