7 resultados para Cerebrospinal Fluid Barriers
em Universidade do Minho
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a marked decline in cognition and memory function. Increasing evidence highlights the essential role of neuroinflammatory and immune-related molecules, including those produced at the brain barriers, on brain immune surveillance, cellular dysfunction and amyloid beta (Aß) pathology in AD. Therefore, understanding the response at the brain barriers may unravel novel pathways of relevance for the pathophysiology of AD. Herein, we focused on the study of the choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, in aging and in AD. Specifically, we used the PDGFB-APPSwInd (J20) transgenic mouse model of AD, which presents early memory decline and progressive Aß accumulation, and littermate age-matched wild-type (WT) mice, to characterize the CP transcriptome at 3, 5-6 and 11-12months of age. The most striking observation was that the CP of J20 mice displayed an overall overexpression of type I interferon (IFN) response genes at all ages. Moreover, J20 mice presented a high expression of type II IFN genes in the CP at 3months, which became lower than WT at 5-6 and 11-12months. Importantly, along with a marked memory impairment and increased glial activation, J20 mice also presented a similar overexpression of type I IFN genes in the dorsal hippocampus at 3months. Altogether, these findings provide new insights on a possible interplay between type I and II IFN responses in AD and point to IFNs as targets for modulation in cognitive decline.
Resumo:
The blood brain barrier (BBB) and the blood cerebrospinal fluid barrier (BCSFB) form the barriers of the brain. These barriers are essential not only for the protection of the brain, but also in regulating the exchange of cells and molecules in and out of the brain. The choroid plexus (CP) epithelial cells and the arachnoid membrane form the BCSFB. The CP is structurally divided into two independent compartments: one formed by a unique and continuous line of epithelial cells that rest upon a basal lamina; and, a second consisting of a central core formed by connective and highly vascularized tissue populated by diverse cell types (fibroblasts, macrophages and dendritic cells). Here, we review how the CP transcriptome and secretome vary depending on the nature and duration of the stimuli to which the CP is exposed. Specifically, when the peripheral stimulation is acute the CP response is rapid, strong and transient, whereas if the stimulation is sustained in time the CP response persists but it is weaker. Furthermore, not all of the epithelium responds at the same time to peripheral stimulation, suggesting the existence of a synchrony system between individual CP epithelial cells.
Resumo:
Purpose – Few research has addressed the factors that undermine people’s subjective perceptions of career success. Hence, the purpose of this paper is to further illuminate the issue of career barriers in perceptions of career success for a specific group of professionals: academics. Design/methodology/approach – This study adopts an interpretative-social constructionist methodology. Complementarily, it was employed a phenomenological method in data gathering and analysis – with the use of in-depth interviews and a theme analysis. The research was undertaken with a group of 87 Portuguese academics of both sexes and in different stages of their academic careers. Findings – The findings pinpoint the existence of multi-level barriers encountered by the academics when trying to succeed in their careers. The interviewees mentioned particularly the organizational-professional career barriers pertaining to three general themes: poor collegiality and workplace relationships; the lack of organizational support and employment precariousness; and the career progression standards and expectations. At the individual life cycle level the interviewees referred to the theme of finding balance; at the same time, the gender structure was also a theme mentioned as an important career barrier in career success, particularly by the women interviewed. Research limitations/implications – One of the limitations of this research is related to the impossibility of generalizability of its findings for the general population. Nevertheless, the researcher provides enough detail that grants the reader with the ability to judge of its similarity to other research contexts. Practical implications – This research highlights the role played by distinct career barriers for a specific professional group: academics. This has implications for higher education policy-makers and for human resources managers in higher education institutions. Originality/value – The current study extends the literature on career success by offering detailed anecdotal evidence on how negative work experiences might hinder career success. This research shows that to understand career barriers to success it is useful to consider multi-level factors: organizational-level factors (e.g. poor collegiality and workplace relationships); individual-level factors (e.g. life-cycle factors such as age/career stage); and structural-level factors (e.g. gender).
Resumo:
One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.
Resumo:
The supercritical fluid technology has been target of many pharmaceuticals investigations in particles production for almost 35 years. This is due to the great advantages it offers over others technologies currently used for the same purpose. A brief history is presented, as well the classification of supercritical technology based on the role that the supercritical fluid (carbon dioxide) performs in the process.
Resumo:
The increase in heavy metal contamination in freshwater systems causes serious environmental problems in most industrialized countries, and the effort to find ecofriendly techniques for reducing water and sediment contamination is fundamental for environmental protection. Permeable barriers made of natural clays can be used as low-cost and eco-friendly materials for adsorbing heavy metals from water solution and thus reducing the sediment contamination. This study discusses the application of permeable barriers made of vermiculite clay for heavy metals remediation at the interface between water and sediments and investigates the possibility to increase their efficiency by loading the vermiculite surface with a microbial biofilm of Pseudomonas putida, which is well known to be a heavy metal accumulator. Some batch assays were performed to verify the uptake capacity of two systems and their adsorption kinetics, and the results indicated that the vermiculite bio-barrier system had a higher removal capacity than the vermiculite barrier (?34.4 and 22.8 % for Cu and Zn, respectively). Moreover, the presence of P. putida biofilm strongly contributed to fasten the kinetics of metals adsorption onto vermiculite sheets. In open-system conditions, the presence of a vermiculite barrier at the interface between water and sediment could reduce the sediment contamination up to 20 and 23 % for Cu and Zn, respectively, highlighting the efficiency of these eco-friendly materials for environmental applications. Nevertheless, the contribution of microbial biofilm in open-system setup should be optimized, and some important considerations about biofilm attachment in a continuous-flow system have been discussed.