2 resultados para Caveolin-1-deficient Mice

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.  

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus epidermidis is a biofilm - forming bacterium and a leading etiological agent of nosocomial infections. The ability to establish biofilms on indwelling medical devices is a key virulence factor for this bacterium. Still, the influence of poly - N - acetyl glucosamine (PNAG), the major component of the extracellular biofilm matrix, in the host immune response has been scarcely studied. Here, t h is influence was assessed in mice challenged i.p. with PNAG - p roducing (WT) and isogenic - mutant lacking PNAG (M10) bacteria grown in biofilm - inducing conditions. Faster bacterial clearance was observed in the mice infected with WT bacteria than in M10 - infected counterparts , which w as accompanied by earlier neutrophil recruitment and higher IL - 6 production. Interestingly, in the WT - infected mice, but not in those infected with M10 , elevated serum IL - 10 was detected . To further study the effe ct of PNAG in the immune response, mice were primed with WT or M10 biofilm bacteria and subsequently infected with WT biofilm - released cells. WT - primed mice presented a higher frequency of splenic IFN - γ + and IL - 17 + CD4 + T cells, and more severe liver patho logy than M10 - primed counterparts. Nevertheless, T reg cells obtained from the WT - primed mice presented a higher suppressive function than those obtained from M10 - primed mice. This effect was abrogated when IL - 10 - deficient mice were similarly primed and infected indicating that PNAG promotes the differentiati on of highly suppressive T reg cells by a mechanism dependent on IL - 10. Altogether, these results provide evidence help ing explain ing the coexistence of inflammation and bacterial persistence often observed in biofilm - originated S. epidermidis infections