3 resultados para CORRESPONDING-STATES THEORY
em Universidade do Minho
Resumo:
The production of a W boson decaying to eν or μν in association with a W or Z boson decaying to two jets is studied using 4.6 fb−1 of proton--proton collision data at s√=7 TeV recorded with the ATLAS detector at the LHC. The combined WW+WZ cross section is measured with a significance of 3.4σ and is found to be 68±7 (stat.)±19 (syst.) pb, in agreement with the Standard Model expectation of 61.1±2.2 pb. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.
Resumo:
This paper presents a search for Higgs bosons decaying to four leptons, either electrons or muons, via one or two light exotic gauge bosons Zd, H→ZZd→4ℓ or H→ZdZd→4ℓ. The search was performed using pp collision data corresponding to an integrated luminosity of about 20 fb−1 at the center-of-mass energy of s√=8TeV recorded with the ATLAS detector at the Large Hadron Collider. The observed data are well described by the Standard Model prediction. Upper bounds on the branching ratio of H→ZZd→4ℓ and on the kinetic mixing parameter between the Zd and the Standard Model hypercharge gauge boson are set in the range (1--9)×10−5 and (4--17)×10−2 respectively, at 95% confidence level assuming the Standard Model branching ratio of H→ZZ∗→4ℓ, for Zd masses between 15 and 55 GeV. Upper bounds on the effective mass mixing parameter between the Z and the Zd are also set using the branching ratio limits in the H→ZZd→4ℓ search, and are in the range (1.5--8.7)×10−4 for 15