8 resultados para CONTRALATERAL PROPHYLACTIC MASTECTOMY

em Universidade do Minho


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Numerous diseases have been related with free radicals overproduction and oxidative stress. Botanical preparations possess a multitude of bioactive properties, including antioxidant potential, which has been mainly related with the presence of phenolic compounds. However, the mechanisms of action of these phytochemicals, in vivo effects, bioavailability and bio-efficacy still need research. Scope and Approach: The present report aims to provide a critical review on the aspects related with the in vivo antioxidant activity of phenolic extracts and compounds from plant origin. Key findings: Biological functions beyond the human metabolism were discussed, comparing in vivo vs. in vitro studies, as also focusing the conditioning factors for phenolic compounds bioavailability and bio-efficacy. Furthermore, an upcoming perspective about the use of phytochemicals as life expectancy promoters and anti-aging factors in human individuals was provided. Conclusions: Overall, and despite all of those advances, the study of the biological potential of numerous natural matrices still remains a hot topic among the scientific community. In fact, the available knowledge about the responsible phytochemicals for the biological potential, their mechanisms of action, the establishment of therapeutic and prophylactic doses, and even the occurrence of biochemical inter-relations, is considerable scarce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Optometria Avançada

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia