20 resultados para COLUMN-SWITCHING TECHNIQUE

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlOx layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlOx(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlOx thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/ intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are 102 and 5 105 , respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, and failure modes for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, failure modes and slip information of the tensile steel bars for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timber frame buildings are well known as an efficient seismic resistant structure popular all over the world not only due to their seismic performance, but also to their low cost and the strength they offer. These constructions still exist today and it is important to be able to preserve them, so a better knowledge on their behaviour is sought. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. A great rehabilitation effort is being carried out on this type of buildings, as their neglect has led to decay or their change in use and alterations to the structure has led to the need to retrofit such buildings; only recently studies on their behaviour have become available and only a few of them address the issue of possible strengthening techniques for this kind of walls. In this scope, an innovative retrofitting technique (near surface mounted steel flat bars) is proposed and validated on traditional timber frame walls based on an extensive experimental program. The results of the static cyclic tests on distinct wall typologies retrofitted with the NSM technique are herein presented and discussed in detail. The main features on deformation, lateral stiffness, lateral resistance and seismic performance indexes are analysed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O aumento da quantidade de dados gerados que se tem verificado nos últimos anos e a que se tem vindo a dar o nome de Big Data levou a que a tecnologia relacional começasse a demonstrar algumas fragilidades no seu armazenamento e manuseamento o que levou ao aparecimento das bases de dados NoSQL. Estas estão divididas por quatro tipos distintos nomeadamente chave/valor, documentos, grafos e famílias de colunas. Este artigo é focado nas bases de dados do tipo column-based e nele serão analisados os dois sistemas deste tipo considerados mais relevantes: Cassandra e HBase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison between three switching techniques that can be used in three-phase four-wire Shunt Active Power Filters (SAPFs). The implemented switching techniques are: Periodic-Sampling (PS), Triangular Carrier Pulse-Width Modulation (TC-PWM) and Space Vector PWM (SVPWM). The comparison between them is made in terms of the compensated currents THD%, implementation complexity, necessary CPU time and SAPF efficiency. To perform this comparison are presented and analyzed several experimental results, obtained with a 20 kVA Shunt Active Power Filter prototype, specially developed for this purpose. The control system of the developed SAPF is based in the p-q Theory with a grid synchronization algorithm p-PLL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, Ba0.8Sr0.2TiO3 (BST)/ITO structures were grown on glass substrate and laser assisted annealing (LAA) was performed to promote the crystallization of BST. Atomic force microscopy and X-ray diffraction studies confirm the crack free and polycrystalline perovskite phase of BST. White light controlled resistive switching (RS) effect in Au/BST/ITO device is investigated. The device displays the electroforming-free bipolar RS characteristics and are explained by the modulationof the width and height of barrier at the BST/ITO interface via ferroelectric polarization. Moreover, the RS effect is signifi- cantly improved under white light illumination compared to that in the dark. The enhanced RS and photovoltaic effects are explained by considering depolarization field and charge distribution at the interface. The devices exhibit stable retention characteristics with low currents (mA), which make them attractive for non volatile memory devices.