10 resultados para C-LifePO4

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Separator membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) were prepared by solvent casting technique based on its phase diagram in N,Ndimethylformamide (DMF) solvent. The microstructure of the PVDF-CTFE separator membranes depends on the initial position (temperature and concentration) of the solution in the phase diagram of the PVDF-CTFE/DMF system. A porous microstructure is achieved for PVDF-CTFE membranes with solvent evaporation temperature up to 50 ºC for a polymer/solvent relative concentration of 20 wt%. The ionic conductivity of the separator depends on the degree of porosity and electrolyte uptake, the highest room temperature value being 1.5 mS.cm-1 for the sample with 20 wt% of polymer concentration and solvent evaporation temperature at 25 ºC saturated with 1 mol L-1 lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in propylene carbonate (PC). This PVDF-CTFE separator membrane in Li/C-LiFePO4 half-cell shows good cyclability and rate capability, showing a discharge value after 50 cycles of 92 mAh.g-1 at 2 C, which is still 55% of the theoretical value. PVDF-CTFE separators are thus excellent candidates for high-power and safety lithium-ion batteries applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous polymer membranes based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) copolymers, P(VDF-TrFE)/PEO, are prepared through the, from partial to total, elimination of PEO, leading to interconnected micropores in the polymer blends. Electrolyte uptake, thermal and mechanical properties depend on the amount of PEO present in the polymer blend. Further, the degree of crystallinity of PEO and the elastic modulus (E´) of the polymer blend decrease with increasing PEO removal. Electrical properties of the polymer blend membranes are influenced by the porosity and are dominated by diffusion. The temperature dependence of ionic conductivity follows the Arrhenius behavior. It is the highest for the membranes with a volume fraction of pores of 44% (i.e, 90% PEO removal), reaching a value of 0.54 mS.cm-1 at room temperature. Battery performance was determined by assembling Li/C-LiFePO4 swagelok cells. The polymer blends with 90% PEO removal exhibit rate (124 mAhg-1 at C/5 and 47 mAhg-1 at 2C) and cycling capabilities suitable for lithium ion battery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Sociologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of construction and demolition waste (C&DW) in the construction industry is an important contribution to attain sustainability in the sector. The roads are among the civil engineering works which can use larger quantities of C&DW recycled aggregates. In Portugal, the limit values for the properties of C&DW recycled aggregates that can be used in the roads of Portuguese Road Network are defined by two Laboratório Nacional de Engenharia Civil (LNEC) technical specifications (TS), in accordance to Portuguese Decree-law no. 46/2008 of May 12th. Municipal and rural roads and trenches have specific characteristics that can enable the use of C&DW of lower quality than those required by existing LNEC TS, and even then ensuring an adequate performance. However, given the absence of specific regulation for those applications, the Portuguese Environment Agency requires compliance with the existing LNEC TS, which represents an obstacle to recycling a significant part of the C&DW, in particular at a local government level. This paper presents guidelines for the recycling of C&DW in municipal and rural roads and in trenches, which could be considered in a new forthcoming LNEC TS. In the preparation of the guidelines, the bibliography collected and analysed, the information gathered from the application of C&DW in a municipal and rural roads of a Portuguese municipality and in the roadways of a Portuguese resort, and the results of laboratory tests carried out on samples collected in the Portuguese municipality were taken into consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare germline mutations in TP53 (17p13.1) cause a highly penetrant predisposition to a specific spectrum of early cancers, defining the Li-Fraumeni Syndrome (LFS). A germline mutation at codon 337 (p.Arg337His, c1010G>A) is found in about 0.3% of the population of Southern Brazil. This mutation is associated with partially penetrant LFS traits and is found in the germline of patients with early cancers of the LFS spectrum unselected for familial his- tory. To characterize the extended haplotypes carrying the mutation, we have genotyped 9 short tandem repeats on chromosome 17p in 12 trios of Brazilian p.Arg337His carriers. Results confirm that all share a common ancestor haplotype of Caucasian/Portuguese-Ibe- ric origin, distant in about 72–84 generations (2000 years assuming a 25 years intergenera- tional distance) and thus pre-dating European migration to Brazil. So far, the founder p. Arg337His haplotype has not been detected outside Brazil, with the exception of two resi- dents of Portugal, one of them of Brazilian origin. On the other hand, increased meiotic recombination in p.Arg337His carriers may account for higher than expected haplotype diversity. Further studies comparing haplotypes in populations of Brazil and of other areas of Portuguese migration are needed to understand the historical context of this mutation in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-ß) plays an important role in carcinogenesis. Two polymorphisms in the TGF-ß1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-ß1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-ß1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients' age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-ß1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06-5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11-6.17; p = 0.027). In conclusion, this study suggests that TGF-ß1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large amplitude oscillatory shear (LAOS) coupled with Fourier transform rheology (FTR) was used for the first time to characterize the large deformation behavior of selected bituminous binders at 20 C. Two polymer modified bitumens (PMB) containing recycled EVA and HDPE and two unmodified bitumens were tested with LAOS-FTR. The LAOS-FTR response of all binders was compared at same frequency, at same Deborah number (by tuning the frequency to the relaxation time of each binder) and at same phase shift angle d (by tuning the frequency to the one corresponding to d = 50 in the SAOS response of each sample). In all the approaches, LAOS-FTR results allowed to differentiate between all the nonlinear mechanical characteristics of the tested binders. All binders show LAOS-FTR patterns reminiscent from colloidal dispersions and emulsions. EVA PMB was less prone to strain-induced microstructural changes when compared to HDPE PMB which showed larger values of nonlinear FTR parameters for the range of shear strains tested in LAOS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano âgalvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against S.epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive \OCP\ value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 hours, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.