5 resultados para Broad-band Photometry

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymer-based materials have been of particular interest as alternatives do synthetic polymers due to their low toxicity, biodegradability and biocompatibility. Among them, chitosan is one of the most studied ones and has recently been investigated for the application as solid state polymer electrolytes. Furthermore, it can serve as a host for luminescent species such as rare earth ions, giving rise to materials with increased functionality, of particular interest for electrochemical devices. In this study, we investigate chitosan based luminescent materials doped wit Eu3+ and Li+ triflate salts from the structural, photophysical and conductivity points of view. Because the host presents a broad emission band in the blue to green, while Eu3+ emits in the red, fine tuning of emission colour and/or generation of white light is possible by optimizing composition and excitation scheme. Europium lifetimes (5D0) are in the range 270 – 350 µs and quantum yields are as high as 2%. Although Li+ does not interfere with the luminescent properties, it grants ion-conducting properties to the material suggesting that a combination of both properties could be further explored in multifunctional device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work it was studied the possible use of thin films, composed of Au nanoparticles (NPs) embedded in a TiO2 matrix, in biological applications, by evaluating their interaction with a well-known protein, Bovine Serum Albumin (BSA), as well as with microbial cells (Candida albicans). The films were produced by one-step reactive DC magnetron sputtering followed by heat-treatment. The samples revealed a composition of 8.3 at.% of Au and a stoichiometric TiO2 matrix. The annealing promoted grain size increase of the Au NPs from 3 nm (at 300 °C) to 7 nm (at 500 °C) and a progressive crystallization of the TiO2 matrix to anatase. A broad localized surface plasmon resonance (LSPR) absorption band (λ = 580–720 nm) was clearly observed in the sample annealed at 500 °C, being less intense at 300 °C. The biological tests indicated that the BSA adhesion is dependent on surface nanostructure morphology, which in turn depends on the annealing temperature that changed the roughness and wettability of the films. The Au:TiO2 thin films also induced a significant change of the microbial cell membrane integrity, and ultimately the cell viability, which in turn affected the adhesion on its surface. The microstructural changes (structure, grain size and surface morphology) of the Au:TiO2 films promoted by heat-treatment shaped the amount of BSA adhered and affected cell viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrates the antibacterial potential of a phage endolysin against Gram-negative pathogens, particularly against multidrug resistant strains of Acinetobacter baumannii. We have cloned, heterologously expressed and characterized a novel endolysin (ABgp46) from Acinetobacter phage vb_AbaP_CEB1 and tested its antibacterial activity against several multidrug-resistant A. baumannii strains. LC-MS revealed that ABgp46 is an N-acetylmuramidase, that is also active over a broad pH range (4.0-10.0) and temperatures up to 50°C. Interestingly, ABgp46 has intrinsic and specific anti-A. baumannii activity, reducing multidrug resistant strains by up to 2 logs within 2 hours. By combining ABgp46 with several organic acids that act as outer membrane permeabilizing agents, it is possible to increase and broaden antibacterial activity to include other Gram-negative bacterial pathogens. In the presence of citric and malic acid, ABgp46 reduces A. baumannii below the detection limit (> 5 log) and more than 4 logs P. aeruginosa and Salmonella Typhimurium strains. Overall, this globular endolysin exhibits a broad and high activity against Gram-negative pathogens, that can be enhanced in presence of citric and malic acid, and be used in human and veterinary medicine.