13 resultados para Brittle solids
em Universidade do Minho
Resumo:
Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive. We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3 1. L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2. A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3. Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)
Resumo:
O presente artigo é dedicado à avaliação experimental da eficiência do reforço com fibra de aço em termos da resistência à punção de lajes lisa carregadas simetricamente. Para este fim, oito lajes de 2550 x 2550 x 150 mm3 foram ensaiadas até a ruína, onde se investigou a influência do consumo de fibras (0, 60, 75 e 90 kg/m3) e da resistência do concreto (50 e 70 MPa). Duas lajes de referência, sem fibras, uma para cada classe de resistência do concreto, e uma laje para cada consumo de fibra e para cada classe de resistência do concreto compuseram o programa experimental. Todas as lajes foram armadas à flexão com barras de aço (armadura convencional) de forma a garantir a ruína por punção das lajes de referência. O único reforço transversal foi garantido pelas fibras de aço hooked ends com comprimento e diâmetro de 37 e 0,55 mm, respectivamente, e resistência à tração de aproximadamente 1100 MPa. Os resultados revelaram que as fibras de aço são muito eficientes em converter uma ruína frágil por cisalhamento em uma ruína dúctil por flexão, aprimorando ambos, carga de ruptura e deslocamento. Neste artigo o programa experimental é abordado em detalhe e os principais resultados são apresentados e discutidos.
Resumo:
Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.
Resumo:
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 x 2550 x 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe inplane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textilereinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.
Resumo:
Poly(vinylidene fluoride), PVDF, films and membranes were prepared by solvent casting from dimethylformamide, DMF, by systematically varying polymer/solvent ratio and solvent evaporation temperature. The effect of the processing conditions on the morphology, degree of porosity, mechanical and thermal properties and crystalline phase of the polymer were evaluated. The obtained microstructure is explained by the Flory-Huggins theory. For the binary system, the porous membrane formation is attributed to a spinodal decomposition of the liquid-liquid phase separation. The morphological features were simulated through the correlation between the Gibbs total free energy and the Flory-Huggins theory. This correlation allowed the calculation of the PVDF/DMF phase diagram and the evolution of the microstructure in different regions of the phase diagram. Varying preparation conditions allow tailoring polymer 2 microstructure while maintaining a high degree of crystallinity and a large β crystalline phase content. Further, the membranes show adequate mechanical properties for applications in filtration or battery separator membranes.
Resumo:
Concrete is the primary construction material for civil infrastructures and generally consists of cement, coarse aggregates, sand, admixtures and water. Cementitious materials are characterized by quasi-brittle behaviour and susceptible to cracking [1]. The cracking process within concrete begins with isolated nano-cracks, which then conjoin to form micro-cracks and in turn macro-cracks. Formation and growth of cracks lead to loss of mechanical performance with time and also make concrete accessible to water and other degrading agents such as CO2, chlorides, sulfates, etc. leading to strength loss and corrosion of steel rebars. To improve brittleness of concrete, reinforcements such as polymeric as well as glass and carbon fibers have been used and microfibers improved the mechanical properties significantly by delaying (but could not stop) the transformation of micro-cracks into macro forms [2]. This fact encouraged the use of nano-sized fillers in concrete to prevent the growth of nano-cracks transforming in to micro and macro forms. Nanoparticles like SiO2, Fe2O3, and TiO2 led to considerable improvement in mechanical performance and moreover, nano-TiO2 helped to remove organic pollutants from concrete surfaces [3].
Resumo:
Preprint submitted to International Journal of Solids and Structures. ISSN 0020-7683
Resumo:
Poster
Resumo:
Solid polymer electrolytes (SPEs) were obtained from chitosan plasticized with glycerol and contained europium (III) trifluoromethanesulfonate salt. The transparent samples were characterized by thermal analysis (DSC and TGA), impedance spectroscopy and electron paramagnetic resonance (EPR). The sample with 55.34 wt.% of europium triflate showed the best ionic conductivity of 1.52 × 10−6 and 7.66 × 10−5 S cm−1 at 30°C and 80°C, respectively. The thermal analysis revealed that the degradation started at around 130–145°C and the weight loss ranged from 20 to 40%. The DSC of the samples showed no Tg, but only a large endothermic peak that was centered between 160 and 200 °C. The EPR analysis showed a broadening of the EPR resonance lines with increasing europium contents in the chitosan membranes due to the magnetic dipole–dipole coupling and spin–spin exchange between the Eu2+ ions. Moreover, the electrolytes based on chitosan and europium triflate presented good flexibility, homogeneity, and transparency.
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
"Series: Solid mechanics and its applications, vol. 226"