13 resultados para Bond strength (materials)

em Universidade do Minho


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Corrosion of the steel reinforced concrete elements is one of the common pathologies that limits the long-term performance of urban infrastructures. This problem causes the loss of structural serviceability by decreasing the concrete-steel bond strength and reducing the cross section of the reinforcements. The present study introduces a new system for developing free-corrosion resistance prefabricated manhole covers for applications in the aggressive environments, i.e. wastewater collector systems, sewer systems, stormwater systems, etc. Fibre reinforced cement composites were applied in this system in order to suppress the corrodible steel mesh and maintain the structural ductility as well. Application of fibre reinforced polymer (FRP) system is adopted as the additional solution for increasing the load carrying capacity of these elements without concerns about corrosion. The effectiveness of the applied strategy in developing the manhole covers in terms of load carrying capacity and failure mode is evaluated in this research. Furthermore, this paper discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since concrete is the most widely utilized construction material, several solutions are currently being developed and investigated for enhancing the sustainability of cementitious materials. One of these solutions is based on producing Recycled Concrete Aggregates (RCA) from existing concrete members resulting by either industrial processes or demolitions of existing structures as a whole. Moreover, waste resulting from industrial processes other than the building construction (i.e., tire recycling, production of steel, powders resulting from other depuration processes) are also being considered as possible low-impact constituents for producing structural concrete and Fiber-Reinforced Cementitious Composites (FRCC). Furthermore, the use of natural fibers is another option for producing environmentally-friendly and cost-effective materials, depending on the local availability of raw materials. To promote the use of concretes partially composed of recycled constituents, their influence on the mechanical and durability performance of these concretes have to be deeply investigated and correlated. This was the main goal of the EnCoRe Project (www.encore-fp7.unisa.it), a EU-funded initiative, whose activities and main findings are summarized in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the extensive research that has been conducted on the debonding behaviour of FRP strengthening systems, no standard methodology has been yet established on its experimental characterization. In this context, to assess the performance and reliability of small scale testing on NSM (near surface mounted) FRP strengthening systems, an experimental program was carried out on a series of nine NSM FRP strengthening systems, in the framework of an international Round Robin Testing (RRT). Eleven laboratories and seven manufacturers and suppliers participated in this extensive international exercise, which regarded both NSM and EBR FRP strengthening systems. Test results obtained for the NSM systems by the participating laboratories are discussed and compared in this paper to investigate the feasibility of the adopted single/double pulling shear test method, to investigate the mechanism of bond between NSM FRP reinforcement and concrete, and to investigate the level of variability obtained between the participating laboratories testing the same material batches. It is concluded that the tested variants in the adopted single/double shear pulling test have a significant influence, stressing the importance of the level of detail of standardized test protocols for bond verification. On overall, given the variants included in this study, the obtained variation in bond stress-slip behaviour between the laboratories remained fairly limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Externally bonded strengthening of masonry structures using Fiber Reinforced Polymers (FRPs) has been accepted as a promising technique. Although the effectiveness of FRPs in improving the performance of masonry components has been extensively investigated, their long-term performance and durability remain poorly addressed. This paper, tackling one of the aspects related to durability of these systems, presents an experimental investigation on the effect of long-term (one year) water immersion on the performance of GFRP-strengthened bricks. The tests include materials' mechanical tests, as well as pull-off and single-lap shear bond tests, to investigate the changes in material properties and bond behavior with immersion time, respectively. The effect of mechanical surface treatment on the durability of the strengthened system as well as the reversibility of the degradation upon partial drying are also investigated. The experimental results are presented and critically discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative composite materials made of continuous fibers embedded in mortar matrices have been recently received attention for externally bonded reinforcement of masonry structures. In this regards, application of natural fibers for strengthening of the repair mortars is attractive due to their low specific weight, sustainability and recycability. This paper presents experimental characterization of tensile and pull-out behavior of natural fibers embedded in two different mortar-based matrices. A lime-based and a geopolymeric-based mortar are used as sustainable and innovative matrices. The obtained experimental results and observations are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which are very similar in qualities to the jute textile fiber. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the planet. The stems of these species were retted in water at 37oC for 20 days. The fibers were tested in order to determine tensile rupture strength, tenacity, elongation, Young’s modulus, cross microscopic structure, Scanning Electronic Microscopy (SEM), regain, combustion, acid, alkali, organic solvent and cellulase effects, pH of the aqueous extract, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained values were compared with those from fibers of recognized applicability in the textile industry including hemp. The results are promising in terms of their employment in thermoset and thermoplastic medium resistance composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica