58 resultados para Bluetooth Data Noise
em Universidade do Minho
Resumo:
The research aimed to establish tyre-road noise models by using a Data Mining approach that allowed to build a predictive model and assess the importance of the tested input variables. The data modelling took into account three learning algorithms and three metrics to define the best predictive model. The variables tested included basic properties of pavement surfaces, macrotexture, megatexture, and uneven- ness and, for the first time, damping. Also, the importance of those variables was measured by using a sensitivity analysis procedure. Two types of models were set: one with basic variables and another with complex variables, such as megatexture and damping, all as a function of vehicles speed. More detailed models were additionally set by the speed level. As a result, several models with very good tyre-road noise predictive capacity were achieved. The most relevant variables were Speed, Temperature, Aggregate size, Mean Profile Depth, and Damping, which had the highest importance, even though influenced by speed. Megatexture and IRI had the lowest importance. The applicability of the models developed in this work is relevant for trucks tyre-noise prediction, represented by the AVON V4 test tyre, at the early stage of road pavements use. Therefore, the obtained models are highly useful for the design of pavements and for noise prediction by road authorities and contractors.
Resumo:
Discussing urban planning requires rethinking sustainability in cities and building healthy environments. Historically, some aspects of advancing the urban way of life have not been considered important in city planning. This is particularly the case where technological advances have led to conflicting land use, as with the installation of power poles and building electrical substations near residential areas. This research aims to discuss and rethink sustainability in cities, focusing on the environmental impact of low-frequency noise and electromagnetic radiation on human health. It presents data from a case study in an urban space in northern Portugal, and focuses on four guiding questions: Can power poles and power lines cause noise? Do power poles and power lines cause discomfort? Do power poles and power lines cause discomfort due to noise? Can power poles and power lines affect human health? To answer these questions, we undertook research between 2014 and 2015 that was comprised of two approaches. The first approach consisted of evaluating the noise of nine points divided into two groups â near the sourceâ (e.g., up to 50 m from power poles) and â away from the sourceâ (e.g., more than 250 m away from the source). In the second approach, noise levels were measured for 72 h in houses located up to 20 m from the source. The groups consist of residents living within the distance range specified for each group. The measurement values were compared with the proposed criteria for assessing low-frequency noise using the DEFRA Guidance (University of Salford). In the first approach, the noise caused discomfort, regardless of the group. In the second approach, the noise had fluctuating characteristics, which led us to conclude that the noise caused discomfort.
Resumo:
This paper aims to assess the impact of environmental noise in the vicinity of primary schools and to analyze its influence in the workplace and in student performance through perceptions and objective evaluation. The subjective evaluation consisted of the application of questionnaires to students and teachers, and the objective assessment consisted of measuring in situ noise levels. The survey covered nine classes located in three primary schools. Statistical Package for Social Sciences was used for data processing and to draw conclusions. Additionally, the relationship of the difference between environmental and background noise levels of each classroom and students with difficulties in hearing the teacherâ s voice was examined. Noise levels in front of the school, the schoolyard, and the most noise-exposed classrooms (occupied and unoccupied) were measured. Indoor noise levels were much higher than World Health Organization (WHO) recommended values: LAeq,30min averaged 70.5 dB(A) in occupied classrooms, and 38.6 dB(A) in unoccupied ones. Measurements of indoor and outdoor noise suggest that noise from the outside (road, schoolyard) affects the background noise level in classrooms but in varying degrees. It was concluded that the façades most exposed to road traffic noise are subjected to values higher than 55.0 dB(A), and noise levels inside the classrooms are mainly due to the schoolyard, students, and the road traffic. The difference between background (LA95,30min) and the equivalent noise levels (LAeq,30min) in occupied classrooms was 19.2 dB(A), which shows that studentsâ activities are a significant source of classroom noise.
Resumo:
As huge amounts of data become available in organizations and society, specific data analytics skills and techniques are needed to explore this data and extract from it useful patterns, tendencies, models or other useful knowledge, which could be used to support the decision-making process, to define new strategies or to understand what is happening in a specific field. Only with a deep understanding of a phenomenon it is possible to fight it. In this paper, a data-driven analytics approach is used for the analysis of the increasing incidence of fatalities by pneumonia in the Portuguese population, characterizing the disease and its incidence in terms of fatalities, knowledge that can be used to define appropriate strategies that can aim to reduce this phenomenon, which has increased more than 65% in a decade.
Resumo:
The present paper investigates the risks that arise from exposure to noise from powerpoles and powerlines in Serzedelo, in the municipality of Guimarães, in Portugal. This research focused on four guiding questions: Can powerlines cause noise? Do powerlines cause discomfort? Do powerlines cause discomfort due to noise? And can powerlines effect human health? Two groups were the basis of the study: people that were exposed to electromagnetic waves and people that were not. the research pointed to the harmful influence of the presence of powerlines and high-voltage masts in residential areas and the damage to the cells in the human body. This type of environmental noise, which has the spectral content of a low frequency, typically tonal noise and a very high speed of propagation, is a complex source to explain in terms of the health profiles of the human population living in Serzedelo, located in an area that is densely occupied by high voltage powerlines and powerpole.
Resumo:
The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with the spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Resumo:
This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.
Resumo:
Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.
Resumo:
Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.
Resumo:
We are living in the era of Big Data. A time which is characterized by the continuous creation of vast amounts of data, originated from different sources, and with different formats. First, with the rise of the social networks and, more recently, with the advent of the Internet of Things (IoT), in which everyone and (eventually) everything is linked to the Internet, data with enormous potential for organizations is being continuously generated. In order to be more competitive, organizations want to access and explore all the richness that is present in those data. Indeed, Big Data is only as valuable as the insights organizations gather from it to make better decisions, which is the main goal of Business Intelligence. In this paper we describe an experiment in which data obtained from a NoSQL data source (database technology explicitly developed to deal with the specificities of Big Data) is used to feed a Business Intelligence solution.
Resumo:
Studies in Computational Intelligence, 616
Resumo:
During the last few years many research efforts have been done to improve the design of ETL (Extract-Transform-Load) systems. ETL systems are considered very time-consuming, error-prone and complex involving several participants from different knowledge domains. ETL processes are one of the most important components of a data warehousing system that are strongly influenced by the complexity of business requirements, their changing and evolution. These aspects influence not only the structure of a data warehouse but also the structures of the data sources involved with. To minimize the negative impact of such variables, we propose the use of ETL patterns to build specific ETL packages. In this paper, we formalize this approach using BPMN (Business Process Modelling Language) for modelling more conceptual ETL workflows, mapping them to real execution primitives through the use of a domain-specific language that allows for the generation of specific instances that can be executed in an ETL commercial tool.
Resumo:
Os recursos computacionais exigidos durante o processamento de grandes volumes de dados durante um processo de povoamento de um data warehouse faz com que a necessidade da procura de novas implementações tenha também em atenção a eficiência energética dos diversos componentes processuais que integram um qualquer sistema de povoamento. A lacuna de técnicas ou metodologias para categorizar e avaliar o consumo de energia em sistemas de povoamento de data warehouses é claramente notória. O acesso a esse tipo de informação possibilitaria a construção de sistemas de povoamento de data warehouses com níveis de consumo de energia mais baixos e, portanto, mais eficientes. Partindo da adaptação de técnicas aplicadas a sistemas de gestão de base de dados para a obtenção dos consumos energéticos da execução de interrogações, desenhámos e implementámos uma nova técnica que nos permite obter os consumos de energia para um qualquer processo de povoamento de um data warehouse, através da avaliação do consumo de cada um dos componentes utilizados na sua implementação utilizando uma ferramenta convencional. Neste artigo apresentamos a forma como fazemos tal avaliação, utilizando na demonstração da viabilidade da nossa proposta um processo de povoamento bastante típico em data warehouses – substituição encadeada de chaves operacionais -, que foi implementado através da ferramenta Kettle.
Resumo:
Worldwide, around 9% of the children are born with less than 37 weeks of labour, causing risk to the premature child, whom it is not prepared to develop a number of basic functions that begin soon after the birth. In order to ensure that those risk pregnancies are being properly monitored by the obstetricians in time to avoid those problems, Data Mining (DM) models were induced in this study to predict preterm births in a real environment using data from 3376 patients (women) admitted in the maternal and perinatal care unit of Centro Hospitalar of Oporto. A sensitive metric to predict preterm deliveries was developed, assisting physicians in the decision-making process regarding the patients’ observation. It was possible to obtain promising results, achieving sensitivity and specificity values of 96% and 98%, respectively.