18 resultados para Big business
em Universidade do Minho
Resumo:
We are living in the era of Big Data. A time which is characterized by the continuous creation of vast amounts of data, originated from different sources, and with different formats. First, with the rise of the social networks and, more recently, with the advent of the Internet of Things (IoT), in which everyone and (eventually) everything is linked to the Internet, data with enormous potential for organizations is being continuously generated. In order to be more competitive, organizations want to access and explore all the richness that is present in those data. Indeed, Big Data is only as valuable as the insights organizations gather from it to make better decisions, which is the main goal of Business Intelligence. In this paper we describe an experiment in which data obtained from a NoSQL data source (database technology explicitly developed to deal with the specificities of Big Data) is used to feed a Business Intelligence solution.
Resumo:
(Excerto) Poder-se-á dizer que há uma informação televisiva “pré” e “pós” “Big Brother”? Detendo-nos nos programas de informação não-diária dos canais generalistas portugueses, procuraremos perceber de que forma o horário nobre, nomeadamente dos canais privados, se esvaziou desse tipo de programação. Esta é uma pequena parte de uma investigação que estamos a desenvolver no projecto de doutoramento e, por outro lado, integra-se num trabalho do grupo Mediascópio que recentemente analisou casos que, no início deste século, alteraram o modo de encarar/fazer jornalismo. Tendo aqui como referência os anos de 1999 (altura em que ainda não estavam no ar as chamadas “novelas da vida real”) e de 2003 (ano após o qual todos os canais generalistas já tinham emitido esse tipo de programas), procederemos a uma análise da informação não-diária no segmento do “prime time”, salientando as tendências do jornalismo televisivo que, nos últimos anos, se vem desenhando no pequeno ecrã.
Resumo:
Special issue guest editorial, June, 2015.
Resumo:
telligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in or- der to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelli- gence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining proce- dure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or de- nial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of ar- ticles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.
Resumo:
Triple negative breast cancer (TNBC) is a particular immunopathological subtype of breast cancer that lacks expression of estrogen and progesterone receptors (ER/PR) and amplification of the human epidermal growth factor receptor 2 (HER2) gene. Characterized by aggressive and metastatic phenotypes and high rates of relapse, TNBC is the only breast cancer subgroup still lacking effective therapeutic options, thus presenting the worst prognosis. The development of targeted therapies, as well as early diagnosis methods, is vital to ensure an adequate and timely therapeutic intervention in patients with TNBC. This review intends to discuss potentially emerging approaches for the diagnosis and treatment of TNBC patients, with a special focus on nano-based solutions that actively target these particular tumors.
Resumo:
Introduction of technologies in the workplace have led to a dramatic change. These changes have come with an increased capacity to gather data about one’s working performance (i.e. productivity), as well as the capacity to track one’s personal responses (i.e. emotional, physiological, etc.) to this changing workplace environment. This movement of self-monitoring or self-sensing using diverse types of wearable sensors combined with the use of computing has been identified as the Quantified-Self. Miniaturization of sensors, reduction in cost and a non-stop increase in the computer power capacity has led to a panacea of wearables and sensors to track and analyze all types of information. Utilized in the personal sphere to track information, a looming question remains, should employers use the information from the Quantified-Self to track their employees’ performance or well-being in the workplace and will this benefit employees? The aim of the present work is to layout the implications and challenges associated with the use of Quantified-Self information in the workplace. The Quantified-Self movement has enabled people to understand their personal life better by tracking multiple information and signals; such an approach could allow companies to gather knowledge on what drives productivity for their business and/or well-being of their employees. A discussion about the implications of this approach will cover 1) Monitoring health and well-being, 2) Oversight and safety, and 3) Mentoring and training. Challenges will address the question of 1) Privacy and Acceptability, 2) Scalability and 3) Creativity. Even though many questions remain regarding their use in the workplace, wearable technologies and Quantified-Self data in the workplace represent an exciting opportunity for the industry and health and safety practitioners who will be using them.
Resumo:
Today recovering urban waste requires effective management services, which usually imply sophisticated monitoring and analysis mechanisms. This is essential for the smooth running of the entire recycling process as well as for planning and control urban waste recovering. In this paper we present a business intelligence system especially designed and im- plemented to support regular decision-making tasks on urban waste management processes. The system provides a set of domain-oriented analytical tools for studying and characterizing poten- tial scenarios of collection processes of urban waste, as well as for supporting waste manage- ment in urban areas, allowing for the organization and optimization of collection services. In or- der to clarify the way the system was developed and the how it operates, particularly in process visualization and data analysis, we also present the organization model of the system, the ser- vices it disposes, and the interface platforms for exploring data.
Resumo:
Nowadays, organizations are increasingly looking to invest in business intelligence solutions, mainly private companies in order to get advantage over its competitors, however they do not know what is necessary. Business intelligence allows an analysis of consolidated information in order to obtain more specific outlets and certain indications in order to support the decision making process. You can take the right decision based on the data collected from different information systems present in the organization and outside of them. The textile sector is a sector where concept of Business Intelligence it is not many explored yet. Actually there are few textile companies that have a BI platform. Thus, the article objective is present an architecture and show all the steps by which companies need to spend to implement a successful free homemade Business Intelligence system. As result the proposed approach it was validated using real data aiming assess the steps defined.
Resumo:
Business Intelligence (BI) can be seen as a method that gathers information and data from information systems in order to help companies to be more accurate in their decision-making process. Traditionally BI systems were associated with the use of Data Warehouses (DW). The prime purpose of DW is to serve as a repository that stores all the relevant information required for making the correct decision. The necessity to integrate streaming data became crucial with the need to improve the efficiency and effectiveness of the decision process. In primary and secondary education, there is a lack of BI solutions. Due to the schools reality the main purpose of this study is to provide a Pervasive BI solution able to monitoring the schools and student data anywhere and anytime in real-time as well as disseminating the information through ubiquitous devices. The first task consisted in gathering data regarding the different choices made by the student since his enrolment in a certain school year until the end of it. Thereafter a dimensional model was developed in order to be possible building a BI platform. This paper presents the dimensional model, a set of pre-defined indicators, the Pervasive Business Intelligence characteristics and the prototype designed. The main contribution of this study was to offer to the schools a tool that could help them to make accurate decisions in real-time. Data dissemination was achieved through a localized application that can be accessed anywhere and anytime.
Resumo:
Tese de Doutoramento em Ciências Empresariais.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia de Gestão e Sistemas de Informação